短纤生产工艺
- 格式:docx
- 大小:36.77 KB
- 文档页数:2
短纤维生产工艺
短纤维是指长度在1.5-4.5毫米之间的纤维,主要用于制作各
种纺织品和非织造布。
下面将介绍短纤维的生产工艺。
首先,短纤维的生产工艺主要分为湿法和干法两种。
湿法生产工艺是将植物纤维或化学纤维通过加工设备处理成湿浆,再通过旋转筛分机将湿浆脱水除杂,得到湿糊状的短纤维。
然后将湿糊状的短纤维进行分散和脱水,使其含水率降低到15%以下。
最后通过烘干设备将湿糊状的短纤维烘干,使其含
水率低于5%。
干法生产工艺则是直接将原纤维送入预处理机械,通过强大的离心力和废气抽吸机的作用,分离出纤维和杂质。
然后通过制粉机将纤维打破成短纤维,最后利用气力输送系统将短纤维输送到后续的加工设备中。
在上述的湿法和干法生产工艺中,还存在着一系列的辅助加工过程。
比如,对植物纤维进行浸渍处理,可以改变其物理性质和纤维结构,提高纤维的柔软性和强度。
同时还可以通过添加化学药剂,对纤维进行漂白和染色加工,使纤维具有更好的颜色和光泽。
此外,为了提高短纤维的加工效率和产品的质量,还需要采用纤维预处理技术。
比如,在短纤维生产过程中可以采用卷曲、撕裂和剥离等预处理技术,以增加纤维的拉伸度和强度,提高产品的稳定性和可靠性。
总的来说,短纤维的生产工艺主要包括湿法和干法两种。
在这两种工艺中,还需要进行一系列的辅助加工和预处理,以提高短纤维的质量和性能。
通过不断的技术创新和工艺改进,短纤维的生产工艺将会越来越高效和环保。
纤维素短纤维纤维素短纤维是一种重要的纤维素材料,它在许多领域都有广泛的应用。
纤维素短纤维的来源多样,可以来自植物、动物和微生物等。
它具有许多独特的特性,例如高强度、高稳定性和可降解性,使得它成为一种理想的材料选择。
纤维素短纤维的制备过程相对简单,一般包括原料的预处理、纤维素提取和纤维素短纤维的加工等步骤。
在预处理阶段,原料常常需要进行切割和研磨等处理,以便更好地提取纤维素。
纤维素的提取可以通过化学方法、物理方法或生物方法来实现。
化学方法常常涉及使用化学溶剂或酶来分离纤维素,而物理方法则包括高温高压处理、超声波处理等。
生物方法则利用微生物的作用来分解原料中的非纤维素物质,从而提取纤维素。
纤维素短纤维的加工过程包括纤维素的纺丝和纤维的固定等步骤。
纤维素的纺丝过程类似于传统纺织品的生产过程,可以使用纺纱机或纺丝机来完成。
纤维的固定则可以通过热处理、化学固定或机械固定等方法来实现。
这些加工步骤可以根据不同的需求进行调整,以获得不同性能的纤维素短纤维。
纤维素短纤维的应用广泛,主要包括纺织、造纸、生物医学、环境保护等领域。
在纺织领域,纤维素短纤维可以用于制作高强度的纺织品,如服装、家居用品和工业用纺织品等。
在造纸领域,纤维素短纤维可以用于制造高质量的纸张和纸板等产品。
在生物医学领域,纤维素短纤维可以用于制备药物缓释系统、组织工程支架和人工血管等。
在环境保护领域,纤维素短纤维可以用于制备生物质能源和生物降解材料等。
纤维素短纤维的研究和应用具有重要意义。
它不仅可以替代传统的纤维材料,减少对有限资源的依赖,还可以降低环境污染和减少能源消耗。
此外,纤维素短纤维的可降解性也使得它在环境保护和可持续发展方面具有巨大潜力。
纤维素短纤维是一种重要的纤维素材料,具有广泛的应用前景。
通过合理的制备和加工过程,纤维素短纤维可以获得不同性能的产品,满足不同领域的需求。
在未来的发展中,纤维素短纤维将继续发挥重要作用,推动材料科学和工程的进步。
涤纶短纤生产工艺涤纶短纤(Polyester Staple Fiber,简称PSF)是以涤纶切片为主要原料,经过一系列的加工工艺制成的纤维产品。
涤纶短纤广泛应用于纺织、填充、包装等领域。
以下是涤纶短纤的生产工艺。
1. 切片制备:涤纶短纤的原料是涤纶切片,切片制备是整个生产工艺的第一步。
涤纶切片是由涤纶原料经过熔融、挤出、拉伸、切断等工序制成的。
2. 干法纺丝:将切片放入熔体粘度控制装置中,通过加热熔化切片,然后经过过滤、加压、挤出等工序,将熔体从纺孔中注入到喷嘴中,并通过高速度的气流将熔体拉伸成纤维。
纤维冷却后进入收纤盘。
3. 液体法纺丝:将切片与混合溶剂混合,在高速旋转的离心机中,通过离心力将溶剂分离出去,留下湿态纤维。
然后通过热风烘干将湿态纤维干燥,得到涤纶短纤。
4. 纤维拉伸:将收集到的湿态纤维进行定向拉伸,增加纤维的强度和断面形状的均匀性。
拉伸过程中,控制拉伸比例和速度,充分发挥纤维的机械性能。
5. 切断:将拉伸后的纤维通过切断机进行切断,使其达到所需的长度。
切断长度的选择根据应用领域的不同而有所差异。
6. 热定型:通过热定型工艺,使涤纶短纤具有一定的回弹性和形状稳定性。
热定型时,将纤维暴露在高温的热风中,使其快速升温并保持一段时间。
通过控制温度和时间,使纤维达到所需的热定型效果。
7. 降线:将经过热定型的涤纶短纤通过降线机构进行降线,形成一定的线密度,并通过卷绕机将纤维卷绕成卷筒状。
8. 成品检验:对生产出的涤纶短纤进行成品检验,检测纤维的光泽度、断裂强度、断裂伸长率等物理性能指标,并对纤维外观进行检查,确保符合产品标准。
以上是涤纶短纤的生产工艺,通过以上一系列的加工工序,涤纶短纤可以得到高品质的纤维产品,广泛应用于各个领域。
第八章制胶岗位要求及操作第一节后溶解岗位及要求一、后溶解岗位责任1. 后溶解的任务是负责后溶解粘胶进料,出料及粘胶后溶解过程,2.在进出料操作时要与黄化工序及接胶工序及时联系,避免造成人为压料。
3.要经常检查各管路阀门开、闭是否正确,防止跑胶、串胶现象发生。
4.要巡回检查设备运转情况,发现问题及时找有关部门处理。
二、安全制度1.上岗必须佩带齐劳动保护用品。
2.后溶解机进料时必须打开机台放气阀。
3.后溶解机通压缩空气导料时,必须按工艺要求控制机内压力,严禁超压操作。
三、后溶解过程操作粘胶后溶解过程操作分为进料、溶解、出料三步1.进料操作(1)接到黄化进料通知后,打开后溶解机放气阀门或真空阀。
(2)打开后溶解机进料阀门,关闭出料阀门,并检查同组其它机台进料阀门是否关闭。
(3)确认各管路阀门开、闭无误,通知黄化进料。
(4)当进料量达到三分之一时,开启搅拌。
(5)开后溶解机夹套进、出盐水阀门,控制粘胶溶解温度。
(6)进料完毕后,关闭进料阀门,如抽真空进料,关闭真空阀门。
(7)做好进料时间、机号、温度等记录。
2.溶解工程操作溶解过程中要始终开动搅拌,防止中途掉闸。
如果后溶解机有外循环系统,要按工艺规定打开外循环泵进口和出口阀门,开启循环泵循环。
3.出料操作(1)达到溶解时间,化验结果符合生产要求,停止搅拌及外循环系统。
(2)通知下一工序进料。
(3)接到下一工序进料通知后,打开溶解机出料阀门及出料泵进出口阀门,开启出料泵出料。
(4)至后溶解机内料出空后,停出料泵,关闭后溶解机出料阀门,做好下次进料准备。
(5)关闭冷却盐水进、出阀门,记下出料时间、温度等数据。
(6)如果后溶解胶的质量不符合要求,要上报有关人员。
混合过滤的操作一、混合生产操作为避免由于各批后溶解粘胶之间质量差异给生产带来的波动,在溶解工序后增加粘胶混合设备,用以混合各批后溶解粘胶。
混合方式分为间接式分批混合与连续式混合两种。
1.间接式分批混合操作(1)首先将混合设备冲洗干净,要求机内无杂物,并保持放气阀门常开。
涤纶短纤的生产工艺
涤纶短纤是一种合成纤维,广泛应用于纺织、服装、家居用品等领域。
涤纶短纤的生产工艺主要包括原料准备、聚合、纺丝、拉伸、切割等环节。
首先是原料准备。
涤纶短纤的主要原料是聚对苯二甲酸乙二醇酯(PET),其通过与苯二甲酸和乙二醇反应得到。
在原料准
备阶段,需要准备PET片材和乙二醇溶液。
接着是聚合过程。
将PET片材经过切碎、干燥等处理后,与
乙二醇溶液一起放入聚合釜中进行反应。
聚合反应需要在一定的温度和压力下进行,通常需要控制反应时间和加热速度。
完成聚合反应后,得到的聚合物溶液需要经过过滤和脱色等处理。
这是为了去除杂质和不纯物质,使聚合物溶液的质量更好。
接下来是纺丝过程。
将聚合物溶液经过加热、过滤等处理后,送入纺丝机内。
纺丝过程中,将聚合物溶液通过纺丝嘴或纺丝孔挤出成一股断面为圆形或其他形状的连续纤维流。
在纺丝过程中,控制纺丝速度和拉伸速度,可以得到不同长度的涤纶短纤。
纺丝结束后,需要进行拉伸和定型处理。
拉伸是通过拉力使纤维延展,改变其物理性质和外观。
定型是将拉伸的纤维暴露在高温下,使其形状和尺寸固定。
拉伸和定型处理可增加纤维的强度和弹性,提高纤维的品质。
最后是切割。
拉伸定型后的纤维根据需求经过切断和整理,得到所需要的涤纶短纤。
切割时需要控制纤维的长度和粗细,以满足不同产品的要求。
总的来说,涤纶短纤的生产工艺包括原料准备、聚合、纺丝、拉伸、定型和切割等环节。
通过这些工艺步骤,可得到质量优良的涤纶短纤,并进一步应用于各个领域。
粘胶短纤维的生产工艺及性能分析摘要:本文探讨了粘胶短纤维的生产工艺及其性能特性。
首先,介绍了粘胶短纤维的制备方法,包括原料选取、溶胶纺丝、拉伸和后处理等工艺步骤。
随后,分析了粘胶短纤维的力学性能、热性能和表面性质。
研究发现,生产工艺参数的调整可以显著影响粘胶短纤维的性能,如拉伸比率、拉伸温度和后处理条件。
此外,粘胶短纤维表现出良好的拉伸强度、热稳定性和表面活性,使其在纺织、复合材料和过滤等领域具有广泛的应用前景。
本研究为粘胶短纤维的制备和应用提供了重要的参考和指导。
关键词:粘胶短纤维、生产工艺、性能分析、力学性能、热性能、表面性质引言:粘胶短纤维作为一种重要的纺织原材料,具有广泛的应用前景,然而,其生产工艺和性能分析一直备受关注。
本文旨在深入研究粘胶短纤维的生产工艺及性能,通过精细调控工艺参数,提高其力学性能、热性能和表面性质,以满足不同领域的需求。
通过本研究,我们将为粘胶短纤维的制备与应用提供新的思路和理论支持,为纺织工业和材料科学领域的发展做出贡献。
一、粘胶短纤维的制备工艺粘胶短纤维的制备工艺是该材料性能优化的关键环节。
制备过程包括原料选取、溶胶纺丝、拉伸和后处理等工艺步骤。
1、原料的选择对粘胶短纤维的最终性能至关重要。
一般来说,粘胶短纤维的原材料主要包括纤维素和粘胶。
优质的纤维素可以提高纤维的强度和稳定性,而粘胶则能赋予其良好的柔软性和耐磨性。
因此,在制备工艺中,需要仔细选择合适的原料,同时考虑到纤维的最终应用领域和要求。
2、溶胶纺丝是粘胶短纤维制备中的关键步骤。
通过将原料溶解在适当的溶剂中,形成均匀的溶胶,然后通过纺丝装置将溶胶喷射成纤维。
在这个过程中,溶剂的选择和纺丝条件的控制对纤维的形态和结构产生显著影响。
例如,溶胶的浓度和温度可以调整纤维的直径和长度,从而影响其力学性能。
3、在制备工艺中的拉伸和后处理步骤可以进一步改善粘胶短纤维的性能。
拉伸过程可以提高纤维的强度和拉伸模量,同时增加其结晶度。
第1章绪论1.1概述粘胶纤维是以天然纤维素(浆粕)为基本原料,经纤维素磺酸酯溶液纺制而成的再生纤维素纤维。
粘胶纤维是一类历史悠久、技术成熟、产量较大,品种繁多,用途广泛的化学纤维。
根据纤维的结构和性能不同,粘胶纤维分成普通纤维、高湿模量类纤维、强力纤维、特殊纤维等不同品种。
粘胶纤维仅迟于纤维素硝酸酯纤维,是最古老的化学纤维品种之一。
在1891年,克罗斯、贝文和比德尔等首先制成纤维素磺酸酯钠溶液,由于这种溶液的粘度很大,因而命名“粘胶”。
粘胶遇到酸后,纤维素又重新析出。
根据这个原理,在1893年发展成为一种制备化学纤维的方法,这种纤维叫做“粘胶纤维”到1905年,米勒尔等发明了一种稀硫酸盐组成的凝固浴,实现了粘胶纤维的工业化生产。
一百多年来,粘胶纤维生产不断发展和完善。
在上世纪的三十年代末期,出现了强力粘胶纤维;五十年代初期,高性能(高湿模量类)粘胶实现了工业化;六十年代初期,粘胶纤维的发展达到了高峰,其产量曾占化学纤维总产量的80%以上。
从六十年代开始,因合成纤维的发展,其发展速度趋于平缓。
到九十年代以后,随着人们对衣着服用性能的改变,这种既有与棉相似的性质的纤维重新受到人们的青睐。
又进入一个新的发展时期。
1.2粘胶纤维的发展前途与应用1.2.1粘胶纤维的发展前途粘胶纤维的发展,有无限的原料基础。
它的基本原料---纤维素的贮备量很大,并有巨大的回复量。
大自然每年都在同化着以兆亿吨计的碳,将其变为含纤维素的各种植物资源。
只要有阳光和水源,数目、野生植物和各种含丰富纤维素的农作物就能生长并不断再生。
而合成纤维所以赖发展的原料(石油、煤、天然气等)随着人们的不断开发利用,已渐进枯竭。
所以纤维素纤维从原料意义上具有长远的发展意义。
粘胶纤维具有一系列可贵的物理机械性能和符合卫生要求的性质。
粘胶纤维最大的特点是与天然纤维---棉的某些性质极为类似,如吸湿性好、容易染色、抗静电、交易于纺织加工,制成品的织物花色鲜艳,穿着舒适尤其适合在气候炎热的地区穿着。
实践与经验合成纤维工业ꎬ2020ꎬ43(3):77CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2020 ̄02 ̄14ꎻ修改稿收到日期:2020 ̄05 ̄10ꎮ作者简介:周世川(1986 )ꎬ男ꎬ工程师ꎬ主要从事粘胶纤维生产技术管理ꎮE ̄mail:xuelang8524@163.comꎮ1.11dtex超细旦粘胶短纤维的生产工艺探讨周世川ꎬ党㊀虎ꎬ谢㊀峰ꎬ王㊀琦ꎬ周振华ꎬ张㊀璐(新疆中泰纺织集团有限公司ꎬ新疆库尔勒841000)摘㊀要:在传统湿法纺丝法生产普通粘胶短纤维的装置和工艺基础上ꎬ通过优化主要工艺参数(包括粘胶质量㊁凝固浴工艺条件㊁拉伸比和收缩系数)㊁改变喷丝头规格ꎬ试生产1.11dtexˑ38mm超细旦粘胶短纤维ꎬ并供下游纱厂生产60s混纺高支纱ꎮ结果表明:选择喷丝头规格为45头㊁单头孔数为2300㊁孔径为0.05mmꎬ控制粘胶黏度为42s㊁熟成度为11.5mLꎬ凝固浴硫酸浓度为120g/L㊁温度为50ħꎬ拉伸比为58%ꎬ收缩系数为79%ꎬ可纺性好ꎬ生产稳定ꎬ可保证产量和产品质量ꎻ上述工艺条件下ꎬ试生产的1.11dtexˑ38mm超细旦粘胶短纤维干断裂强度达2.52cN/dtexꎬ湿断裂强度达1.33cN/dtexꎬ干断裂伸长率为18.64%ꎬ产品质量达到优质品指标ꎻ当1.11dtexˑ38mm超细旦粘胶短纤维混纺比例为40%ꎬ生产的60s混纺高支纱纱线质量较好ꎮ关键词:粘胶纤维㊀短纤维㊀超细旦㊀喷丝头㊀生产工艺中图分类号:TQ341+.1㊀㊀文献标识码:B㊀㊀文章编号:1001 ̄0043(2020)03 ̄0077 ̄04㊀㊀粘胶纤维是以天然棉短绒㊁木材㊁竹材㊁甘蔗渣等富含纤维素的物质为原料生产的再生纤维素纤维ꎬ其最大特点是与天然棉纤维的某些服用性能极为相似ꎬ具有吸湿㊁透气㊁易染色㊁抗静电和易纺等优良性能[1]ꎮ目前ꎬ粘胶纤维行业产品结构单一ꎬ生产的品种多数以普通短纤维为主ꎬ粘胶纤维产品的功能化㊁异形化㊁细旦化成为行业近年来重要的发展方向[2]ꎮ因此ꎬ国内大部分企业都在产品的差别化㊁功能化上下功夫ꎮ超细旦粘胶短纤维是粘胶短纤维的差别化产品ꎬ其在原有长度不变的情况ꎬ线密度更小ꎬ纤维更细ꎬ同时ꎬ在保持机械性能的基础上ꎬ手感更好ꎬ其纱线及织物更细滑柔软ꎬ面料更轻薄ꎬ质量更好[3-4]ꎮ普通粘胶短纤维因结构单一ꎬ在高档纺织品领域的应用存在局限性ꎬ其纱线大都是中㊁低支纱ꎬ规格为45s以下ꎬ而高支纱品种很少ꎬ如60s以上高支纱的生产基本处于空白ꎮ随着社会的发展进步及人类生活品质的提高ꎬ生产高支纱已成为粘胶短纤维行业的发展趋势ꎮ为进一步优化粘胶短纤维产品结构㊁拓展粘胶短纤维的应用ꎬ作者采用传统湿法纺丝工艺ꎬ在现有的普通粘胶短纤维生产线上ꎬ通过调整工艺参数ꎬ改变喷丝头的规格ꎬ成功生产出规格为1.11dtexˑ38mm的超细旦粘胶短纤维ꎬ并在下游纺纱厂试生产60s混纺高支纱ꎬ纱线质量均符合优等品各项指标ꎮ1㊀试验1.1㊀主要原材料阔叶浆粕:山东太阳纸业有限公司生产ꎻ液碱:工业级ꎬ新疆中泰化学集团有限生产ꎻ二硫化碳:工业级ꎬ新疆巴州瑞兴化工有限生产ꎻ硫酸:工业级ꎬ新疆中泰纺织集团生产ꎮ1.2㊀主要设备及仪器喷丝头:北京华宇创新钽铌科技有限公司制ꎻ酸碱滴定仪器:安徽美星实验设备有限公司制ꎻNDJ ̄8S型数字显示旋转粘度计:淄博淄分仪器有限公司制ꎻYG001B单纤维强力机:常州市中纤检测仪器设备有限公司制ꎮ1.3㊀1.11dtex超细旦粘胶短纤维的生产超细旦粘胶短纤维的生产采用传统湿法纺丝法ꎬ在现有的普通粘胶短纤维生产工艺流程和主机设备的基础上进行ꎬ原料浆粕经过滤㊁熟成㊁脱泡ꎬ得到的粘胶达到纺丝要求的黏度㊁熟成度后ꎬ再经纺前过滤送往纺丝机ꎬ使用特殊设计的喷丝头ꎬ结合特殊的凝固浴组成和合理的拉伸分配ꎬ纤维在凝固浴中固化成形ꎬ最后经切断㊁精炼㊁烘干等后处理工序ꎬ制得超细旦粘胶短纤维ꎮ主要生产工艺参数如下:粘胶黏度35~50s㊁熟成度8~13mL㊁甲纤质量分数8.9%~9.3%㊁碱质量分数4.95%~5.45%ꎬ凝固浴硫酸浓度(123ʃ1)g/L㊁硫酸锌浓度7.0~8.0g/L㊁温度47.5~48.5ħꎬ纺丝速度70m/minꎬ喷丝头规格为45头㊁单头孔数2300㊁孔径0.05mmꎬ拉伸比58%ꎬ收缩系数79%ꎮ生产的超细旦粘胶短纤维规格为1.33dtexˑ38mmꎬ生产工艺流程见图1ꎮ浆粕制胶ң纺丝ң拉伸ң切断ңң一水洗脱硫ң二水洗ң漂白ң三水洗ңң脱氯四水洗ң终水洗ң上油ң湿开棉ңң烘干精开棉ң打包ң成品ң图1㊀超细旦粘胶短纤维生产工艺流程Fig.1㊀Flowchartofultrafineviscosestaplefiberproduction1.4㊀分析与测试线密度:在标准大气压条件下ꎬ从伸直的纤维束上切取一定长度的纤维束ꎬ按照GB/T14463 2008«粘胶短纤维»测试并计算[5]ꎮ力学性能:采用YG001B单纤维强力机ꎬ按照GB/T14463 2008«粘胶短纤维»测试纤维的断裂强度㊁断裂伸长率等[5]ꎮ2㊀结果与讨论2.1㊀粘胶质量(1)熟成度粘胶的熟成度高ꎬ即粘胶老ꎬ盐值低ꎻ熟成度低ꎬ即粘胶生ꎬ盐值高ꎮ熟成度高㊁盐值低的粘胶在酸浴中较易凝固ꎬ可纺性好ꎮ熟成度低㊁盐值高㊁胶生的粘胶丝条凝固性能差ꎬ经不起拉伸ꎬ易形成毛丝或断头ꎮ试验表明ꎬ粘胶的熟成度控制在8~13mL较好ꎮ(2)黏度粘胶的黏度过高ꎬ气泡不易脱尽ꎬ而且送胶压力下降ꎬ会造成毛丝增多ꎬ易出现缠辊现象ꎻ黏度太低时成形不稳定ꎬ丝条易断头ꎬ可纺性差ꎮ试验表明ꎬ粘胶的黏度控制在(40ʃ5)s较好ꎮ2.2㊀喷丝头规格生产超细旦粘胶短纤维ꎬ喷丝头是关键ꎬ由于纤维素黄酸酯分子链长ꎬ相对分子质量大ꎬ分子间有较强的引力ꎬ粘胶进入喷丝孔入口时受到剪切力的作用产生入口效应ꎬ粘胶体积变小ꎬ所产生的弹性能储存于粘胶中ꎬ由于粘胶在喷丝孔道中的时间非常短ꎬ内应力得不到完全松弛ꎬ所消耗的弹性能很少ꎬ大部分弹性能在粘胶出孔口时释放发生回弹ꎬ产生孔口胀大效应ꎬ粘胶细流比在孔道时放大2.5~3.0倍ꎮ因此ꎬ在实际生产中必须缩小喷丝头孔径ꎬ纤维线密度才能变小ꎬ纤维才能更细ꎬ在原纺速及对应产量不变的情况下ꎬ所匹配的喷丝头孔数必须增多ꎬ保证纺丝盘在相应纺丝速度下单位时间的喷胶量相等ꎮ生产1.33dtex普通粘胶短纤维时ꎬ采用的喷丝头规格为45头㊁单头孔数1900㊁孔径0.055mmꎮ生产1.11dtex超细旦粘胶短纤维时ꎬ纤维线密度减小ꎬ为保证产量ꎬ需增加喷丝头孔数ꎻ在纺丝盘总横截面积一定的情况下ꎬ孔径不同ꎬ对应的喷丝头孔数也不同ꎬ且喷丝头孔径越小ꎬ其加工难度越大ꎮ为保证产量兼顾喷丝孔的加工难度ꎬ生产1.11dtex超细旦粘胶短纤维时ꎬ选择喷丝头孔数为2300ꎬ孔径为0.05mmꎮ2.3㊀纺丝凝固浴工艺条件(1)硫酸浓度粘胶凝固与纤维素再生的速度与凝固浴中的硫酸浓度有关ꎮ硫酸浓度过高ꎬ纤维成形速度过快ꎬ易形成粗大的凝胶结构ꎬ造成纤维内外层的再生程度不均一ꎬ在拉伸时易发生脆性断裂ꎬ强度下降ꎻ硫酸浓度过低ꎬ会使凝固再生过程缓慢而造成纺丝困难ꎬ易断头及出现胶块㊁疵点ꎮ试验中控制硫酸浓度在122~124g/Lꎬ可纺性好ꎬ生产稳定ꎮ(2)硫酸锌浓度凝固浴中硫酸锌的作用主要是延缓再生ꎬ加入少量的硫酸锌可改善纤维成形效果ꎬ使纤维具有较高的韧性和优良的抗疲劳性能ꎬ纤维结构均匀ꎬ能提高纤维的强度ꎬ还能提高纤维的伸度和勾结强度ꎮ但是ꎬ凝固浴中硫酸锌浓度太高ꎬ会使纤维成形过于缓慢ꎬ丝条易带胶块ꎬ影响可纺性ꎮ试验表明ꎬ硫酸锌浓度控制在7.0~8.0g/L时ꎬ可纺性好ꎬ纤维成形好ꎮ(3)凝固浴温度提高凝固浴温度能加快凝固过程中各种物理㊁化学过程的进行ꎬ能提高成品纤维结构的均匀性ꎬ纤维强伸度也随着增加ꎮ但当凝固浴温度高于某个临界值时ꎬ成形速度过快以及硫化氢㊁二硫化碳气体大量逸出而使纤维产生大量孔隙ꎬ成品纤维的强伸度反而下降ꎮ试验中凝固浴温度宜控制在48~52ħꎮ87㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2020年第43卷2.4㊀拉伸比和收缩系数粘胶从喷丝头喷出时ꎬ首先进行喷头拉伸ꎮ粘胶细流尚处于粘流态ꎬ喷头拉伸主要是将粘胶细流导引成线ꎬ喷头拉伸过大ꎬ丝条易断头或产生毛丝ꎮ喷头拉伸后进入盘间拉伸ꎬ盘间拉伸是在纺丝机导丝盘与第一集束机㊁第二集束机之间进行的ꎬ通过盘间拉伸ꎬ纤维大分子链可以沿着纤维轴向整齐排列而形成新的缔合点并被固定下来ꎬ定向性提高ꎬ从而提高纤维的物理机械性能ꎮ丝束经过强烈拉伸后ꎬ纤维素大分子及其聚集大多沿着拉力方向取向ꎬ大分子间的作用力很强ꎬ使纤维大分子几乎处于僵直状态ꎬ因此纤维必然产生回缩ꎮ在拉伸后纤维适当回缩ꎬ在不过多地损害纤维强度的情况下ꎬ可改善纤维的脆性ꎬ使纤维伸度有所提高ꎮ生产1.33dtex普通粘胶短纤维时ꎬ拉伸比控制在54%ꎬ收缩系数保持在81%ꎬ其强力与干断裂伸长率均达到优等品指标ꎮ生产1.11dtex超细旦粘胶短纤维时ꎬ为保证其线密度与强力ꎬ将拉伸比从54%调整至58%ꎬ收缩系数从81%调整至79%ꎮ2.5㊀后处理工艺条件(1)切断粘胶短纤维用于纺织加工或与棉㊁毛及其他化纤混纺ꎬ必须将纤维切断成棉纺厂生产所需的规定长度ꎬ生产1.11dtex超细旦粘胶短纤维时ꎬ切断长度不变为38mmꎮ(2)精练精练的目的是除去或减少初生纤维中对成品纤维质量有影响的杂质ꎬ再通过上油柔化处理ꎬ改善纤维的纺织性能ꎮ精练工序包括水洗㊁脱硫㊁漂白㊁脱氯㊁上油等ꎮ首先ꎬ给纤槽将切断后的纤维经高温水流冲击充分打散ꎬ通过水洗以除去纤维表面的残硫及硫酸盐等杂质ꎮ纤维的含硫杂质大部分在此被洗去ꎬ以后各道水洗的目的就是除去前道工序生成的水溶性杂质及处理药液ꎮ硫在较高温度下可以溶解于水ꎬ因此附在纤维表面的硫ꎬ大部分可用80ħ左右的热水清洗掉ꎬ而留在纤维内部的硫是以胶体质点状态存在ꎬ必须用化学药剂处理ꎬ使不溶于水的胶态硫转化为水溶性的硫化物而被除去ꎬ采用氢氧化钠来脱硫ꎬ温度84~88ħꎮ然后ꎬ对水洗脱硫后的纤维进行漂白ꎮ经脱硫后的纤维ꎬ光泽虽已转强ꎬ但外观上还带有黄色色光ꎮ试验中采用次氯酸钠对纤维进行漂白ꎬ漂白液pH值控制在8~10.5ꎮ当pH为6~8时ꎬ对纤维破坏最严重ꎬ且次氯酸钠易分解出有害气体㊁恶化劳动条件ꎻ当pH大于10.5时ꎬ纤维的损伤较小ꎬ但会腐蚀机械零件ꎮ最后ꎬ对纤维进行上油ꎮ纤维经水洗㊁脱硫㊁漂白后ꎬ附着在纤维上的大部分杂质虽已除去ꎬ但仍不能直接用于纺织ꎬ还需进行上油柔化处理ꎮ上油的目的是调节纤维表面的摩擦力ꎬ使纤维具有平滑的手感ꎬ又有适当的抱合力ꎬ消除静电从而改善纤维的纺织性能ꎮ(3)烘干及打包纤维经后处理后ꎬ含湿很高ꎮ为了使产品达到要求的含湿标准(标准回潮率为13%)ꎬ必须对纤维进行干燥ꎬ在干燥过程中不仅是纤维的水分被蒸发ꎬ而且纤维的结构也发生了变化ꎬ所以纤维经过干燥ꎬ很多性质将被固定下来ꎮ纤维的干燥时间和干燥均匀程度与进入烘燥机纤维层的温度㊁厚度均匀性㊁松散程度㊁空气温度以及相对湿度等有关ꎮ当烘干温度较低时ꎬ纤维的断裂强度随烘干温度的提高有所上升ꎬ且断裂伸长也随强度的增加而增加ꎮ此外ꎬ温度低ꎬ烘干时间长ꎬ烘干机的长度要增加ꎮ烘干后的纤维需再次开松ꎬ使其回潮趋于均匀ꎬ并且松散柔和的纤维更便于风送ꎮ经烘干机烘干和精开棉机干开松后ꎬ纤维借助于风机产生的气流经风管至凝棉器ꎬ然后落棉至打包机ꎬ打包成一定规格和尺寸的棉包ꎬ以便于储存和运输ꎮ2.6㊀试生产工况及产品质量(1)第一次试生产条件第一次试生产考核周期为3dꎬ粘胶的黏度平均值为42s㊁熟成度平均值为11.5mLꎬ凝固浴硫酸浓度平均值为123g/L㊁硫酸锌浓度平均值7.4g/L㊁温度为48ħꎮ在此工艺条件下试生产1.11dtex超细旦粘胶短纤维ꎬ生产控制平稳ꎮ(2)第二次试生产条件第二次试生产考核周期也为3dꎬ生产条件与第一次相比ꎬ粘胶各指标保持不变ꎬ但凝固浴硫酸浓度从123g/L下调至120g/Lꎬ凝固浴温度从48ħ上调至50ħꎮ从纺丝成形情况看ꎬ第一次试生产过程中出现异常缠辊现象ꎬ第二次试生产时明显好转ꎬ生产稳定ꎮ2次试生产1.11dtexˑ38mm超细旦粘胶97第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀周世川.1.11dtex超细旦粘胶短纤维的生产工艺探讨短纤维的质量指标见表1ꎮ从表1可知:2次试生产的纤维质量指标均达到优等品标准要求ꎻ第二次试生产时ꎬ因凝固浴硫酸浓度下降㊁温度上升ꎬ得到的纤维力学性能更好ꎬ纤维干断裂强度达2.52cN/dtexꎬ湿断裂强度达1.33cN/dtexꎬ干断裂伸长率为18.64%ꎮ表1㊀1.11dtex超细旦粘胶短纤维试生产产品质量Tab.1㊀Qualityof1.11dtexultrafineviscosestaplefiberintrialproduction项目参数第一次第二次标准值线密度偏差率ꎬ%ʃ2ʃ1ʃ4干断裂强度/(cN dtex-1)2.502.52ȡ2.15湿断裂强度/(cN dtex-1)1.311.33ȡ1.2干断裂伸长率ꎬ%19.3118.6418~22㊀㊀试生产的1.11dtexˑ38mm超细旦粘胶短纤维供下游纱厂生产混纺高支纱ꎬ根据下游纱厂生产反馈ꎬ使用超细旦粘胶短纤维混纺比例为40%ꎬ生产60s高支纱ꎬ生产正常ꎬ纱线质量较好ꎮ3㊀结论a.在普通粘胶短纤维生产装置上ꎬ试生产1.11dtexˑ38mm超细旦粘胶短纤维ꎬ为保证产量ꎬ喷丝头孔径必须相应变小ꎬ孔数相应增多ꎻ为保证纤维强力ꎬ应提高拉伸比ꎬ降低收缩系数ꎻ适当降低酸浴浓度㊁提高酸浴温度ꎬ纤维强力较好ꎮb.试生产1.11dtex超细旦粘胶短纤维时ꎬ选择喷丝头孔数为2300㊁孔径为0.05mmꎬ控制粘胶黏度为42s㊁熟成度为11.5mLꎬ凝固浴硫酸浓度为120g/L㊁温度为50ħꎬ拉伸比为58%ꎬ收缩系数为79%ꎬ可纺性好ꎬ生产稳定ꎻ纤维干断裂强度达2.52cN/dtexꎬ湿断裂强度达1.33cN/dt ̄exꎬ干断裂伸长率为18.64%ꎮc.以1.11dtex超细旦粘胶短纤维混纺比例为40%ꎬ生产60s高支纱ꎬ纱线质量较好ꎮ参㊀考㊀文㊀献[1]㊀马峰刚ꎬ邱纯利.中空竹浆粘胶短纤维的开发及应用[J].人造纤维ꎬ2017ꎬ47(6):6-9.[2]㊀汪进秋.简析粘胶短纤维行业技术进步及发展趋势[J].唐山师范学院学报ꎬ2018ꎬ40(3):41-43.[3]㊀孙建磊ꎬ张胜靖ꎬ李龙.再生纤维素纤维的研究进展[J].合成纤维工业ꎬ2010ꎬ33(5):49-51.[4]㊀党良虎ꎬ郝连庆ꎬ赵永伟.粗旦扁平粘胶短纤维的开发及应用[J].人造纤维ꎬ2017ꎬ47(5):7-9.[5]㊀中国国家标准化管理委员会.GB/T14463 2008:粘胶短纤维[S].北京:中国标准出版社ꎬ2008.Productionprocessof1.11dtexultrafineviscosestaplefiberZHOUShichuanꎬDANGHuꎬXIEFengꎬWANGQiꎬZHOUZhenhuaꎬZHANGLu(XinjiangZhongtaiTextileGroupCo.ꎬLtdꎬKorla841000)Abstract:Onthebasisofthetraditionalwetspinningequipmentandprocessforproducingcommonviscosestaplefiberꎬanul ̄trafineviscosestaplefiberof1.11dtexˑ38mmwasobtainedbyoptimizingthemainprocessparametersꎬincludingviscosequali ̄tyꎬcoagulationbathconditionsꎬstretchratioandshrinkagecoefficientꎬandadaptingthespinneretspecificationsinthetrialpro ̄ductionꎬwhichwasusedtoproduce60sblendedhighcountyarninthedownstreammills.Theresultsshowedthattheoutputandtheproductqualitycanbeguaranteedduetothegoodspinnabilityandthestableproductionundertheconditionsasfollowed:45 ̄headspinneretwith2300holesperspinneretand0.05mminapertureꎬviscosewiththeviscosityof42sandmaturityof11.5mLꎬ120g/Lsulfuricacidin50ħcoagulationbathꎬstretchratio58%andshrinkagecoefficient79%ꎻtheobtained1.11dtexˑ38mmultrafineviscosestaplefiberexhibitedthedrybreakingstrengthupto2.52cN/dtexꎬwetbreakingstrength1.33cN/dt ̄exanddryelongationatbreak18.64%ꎬsatisfyingthephysicalindexofhigh ̄qualityproductsꎻandtheobtained60shighcountyarnwasofrelativelygoodqualitywhentheblendingratioof1.11dtexˑ38mmultrafineviscosestaplefiberwas40%.Keywords:viscosefiberꎻstaplefiberꎻultrafineꎻspinneretꎻproductionprocess08㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2020年第43卷。
短纤生产工艺
短纤生产工艺是指将晶体聚合物压榨成带有不同断面形状的连续纤维条,然后通过张力控制、加热拉伸、涤纶预处理和切割等工序处理后,得到不同规格和性能的短纤产品的过程。
短纤生产工艺主要包括以下几个步骤:
1. 晶体聚合物压榨:将聚合物根据不同的配方混合后,通过挤出机将熔融的聚合物压榨出来,形成连续纤维状的物料。
2. 张力控制:短纤生产过程中,为了保持纤维的连续性和稳定性,需要通过张力控制装置对纤维进行张力调整,以避免纤维断裂或拉伸过度。
3. 加热拉伸:将短纤经过张力控制后,送入预热器进行加热处理,然后通过拉伸机进行拉伸,使原本粗糙的纤维形成细长的纤维丝,提升纤维的均匀性和拉伸性能。
4. 涤纶预处理:短纤的表面常常附着有一些杂质和油脂,为了改善纤维表面的性能,需要进行涤纶预处理。
预处理工序通常包括涤纶预处理液的浸泡、洗涤和干燥等步骤。
5. 切割:对经过加热拉伸和涤纶预处理的纤维进行切割,将其切成适合客户需求的长度。
6. 包装和质检:将切割好的短纤按照规格和包装要求进行分装和包装,并进行质量检验,确保产品的质量达到标准要求。
短纤生产工艺的关键环节在于加热拉伸和涤纶预处理。
加热拉伸可以改善纤维形态和性能,提高纤维的强度、延伸性和抗断裂性能。
涤纶预处理可以去除纤维表面的杂质和油脂,提高纤维与其他材料的粘附性能,使短纤在后续的加工和应用中更加稳定和可靠。
总之,短纤生产工艺是一个复杂而精细的过程,需要通过严格的工艺控制和质量检验,确保生产出符合客户需求和标准要求的短纤产品。