细菌的生长繁殖与变异
- 格式:ppt
- 大小:237.00 KB
- 文档页数:20
举例说明细菌变异的类型及意义细菌变异是指细菌在繁殖过程中产生的遗传变异,主要包括基因突变和基因重组两种类型。
细菌变异对细菌的生存和适应环境具有重要意义,下面将具体列举十个细菌变异的类型及其意义。
1. 点突变:点突变是指细菌染色体上的一个碱基发生替换、插入或缺失,导致基因序列发生改变。
例如,青霉素抗性细菌的产生,是由于其基因中的一个位点发生突变,导致细菌对青霉素产生抗性。
这种突变对细菌生存的意义在于提供了对抗抗生素的能力。
2. 基因重组:基因重组是指细菌染色体上的基因片段发生重排或重组,产生新的基因组合。
例如,大肠杆菌在不利环境下,通过基因重组可以产生新的代谢途径,使其能够利用新的营养源,提高生存能力。
3. 缺失突变:缺失突变是指细菌染色体上的一个或多个基因发生缺失现象。
例如,缺失了某个代谢酶基因的细菌,无法进行特定代谢途径,从而限制了其生存环境和适应能力。
4. 插入突变:插入突变是指细菌染色体上插入外源基因或转座子等遗传元素。
例如,细菌感染病毒时,病毒的基因组可以插入到细菌染色体中,导致细菌产生新的特性或功能。
5. 逆转录突变:逆转录突变是指RNA病毒通过逆转录过程将RNA转录成DNA,并插入到细菌染色体中。
例如,逆转录酶病毒可以将其RNA基因组逆转录成DNA,并插入到细菌染色体中,从而改变细菌的基因组和表达。
6. 重复序列扩增:重复序列扩增是指细菌染色体上的重复序列发生扩增现象。
例如,某些细菌在适应新环境时,重复序列会发生扩增,从而改变细菌的表型,提高其适应能力。
7. 跨种质传递:跨种质传递是指细菌之间通过水平基因转移的方式,将遗传物质传递给其他物种。
例如,耐草酮酸的细菌通过水平基因转移将耐草酮酸的基因传递给其他细菌,使其获得对抗草酮酸的能力。
8. 共生关系形成:细菌通过与其他物种的共生关系,使其能够适应特定环境。
例如,一些细菌与植物根系形成共生关系,通过与植物共生,细菌可以获得必需的营养物质,而植物则受益于细菌提供的氮源。
细菌的变异名词解释细菌的变异是指细菌不断演化变异适应新环境的过程,是许多微生物的物种多样性的重要来源。
细菌的变异可能是由于遗传因素、(基因)重组、突变、基因置换、噬菌体介导等多种原因造成的。
它不仅是一种微生物多样性的增加,也是细菌对于病原体感染的耐受性、抗药性、耐胁迫性等功能的变化。
细菌的变异可以发生在基因水平、代谢水平、细胞形态以及侵染机制等方面。
基因变异可能包括改变基因组结构、表达水平变化和突变等现象。
例如,在一种病原菌中,一个拮抗素靶基因可能发生变异,导致细菌相对于该药物具有耐药性;在另一种细菌中,一种抗原基因可能发生变异,从而改变细菌表面抗原分子,使细菌难以被免疫系统识别,也就使其具有较强的侵染性。
它还可能包括改变基因组中某个基因的表达水平以及调节基因的表达水平等行为。
另外,细菌的变异还可发生在代谢水平,这种变异主要是由于细菌基因组中相关基因发生变异而引起的。
例如,细菌代谢物的变异可能会导致细菌在新环境中形成新的结构,控制细菌的生长、繁殖过程,从而增强细菌对环境的适应能力,也会对细菌的抗药性产生影响。
细胞形态变异是指细菌胞体上有明显的变化,通常伴随着基因表达和代谢变化,常伴随着病原性和耐药性变异,这是微生物发展成病原菌与抗药性菌的重要因素。
例如,细菌膜上的侵染复合物可能改变其膜的结构,从而影响细菌的识别和入侵;细菌外膜上的凝集素可能改变其形状和数量,从而影响细菌的质子梯度维持,这可能影响膜结构和功能;细菌外膜上的糖蛋白也可能改变其形状和数量,从而影响细菌的侵染性。
最后,细菌的变异还可能发生在侵染机制方面。
细菌的变异可能导致细菌的侵入机制发生变化,从而改变其对细胞的侵染性。
例如,细菌可能改变其外膜的结构和构型,从而改变其侵染的信号途径,同时也可能改变细菌的侵染复合物,允许其入侵更多的组织细胞。
总之,细菌的变异对细菌发展具有重要意义,是病原性和耐药性变异的重要因素。
它不仅可以为微生物多样性提供重要来源,也可以增强细菌对新环境的适应能力,从而使其能够在药物抵抗性、耐药性和增殖能力方面获得优势。
第5章细菌的遗传与变异遗传与变异是所有生物的一起生命特点。
细菌亦是一种生物,其形态结构、生理代谢、致病性、耐药性、抗原性等性状都是由细菌的遗传物质所决定。
遗传(heredity)使细菌的性状维持相对稳固,且代代相传,使其种属得以保留。
另者在必然条件下,假设子代与亲代之间和子代与子代之间的生物学性状显现不同称变异(variation)。
变异可使细菌产生新变种,变种的新特性靠遗传得以巩固,并使物种得以进展与进化。
细菌的变异分为遗传性与非遗传性变异,前者是细菌的基因结构发生了改变,如基因突变或基因转移与重组等,故又称基因型变异;后者是细菌在必然的环境条件阻碍下产生的变异,其基因结构未改变,称为表型变异。
基因型变异样发生于个别的细菌,不受环境因素的阻碍,变异发生后是不可逆的,产生的新性状可稳固的遗传给后代。
相反,表型变异易受到环境因素的阻碍,凡在此环境因素作用下的所有细菌都显现变异,而且当环境中的阻碍因素去除后,变异的性状又可恢复,表型变异不能遗传。
第一节细菌的变异现象一、形态结构的变异细菌的大小和形态在不同的生长时期可不同,生长进程中受外界环境条件的阻碍也可发生变异。
如鼠疫耶尔森菌在陈腐的培育物或含30g/L NaCl的培育基上,形态可从典型的两极浓染的椭圆形小杆菌变成多形态性,如球形、酵母样形、亚铃形等。
又如许多细菌在青霉素、免疫血清、补体和溶菌酶等因素阻碍下,细胞壁合成受阻,成为细胞壁缺点型细菌(细菌L型变异),L型的革兰染色多为阴性,呈球形、长丝状或多形态性,在含血清的高渗低琼脂培育基(含20%血清、5%NaCl、%琼脂)上能缓慢生长,形成中央厚而周围薄的荷包蛋样小菌落。
细菌的一些特殊结构,如荚膜、芽胞、鞭毛等也可发生变异。
肺炎链球菌在机体内或在含有血清的培育基中初分离时可形成荚膜,致病性强,经传代培育后荚膜慢慢消失,致病性也随之减弱。
将有芽胞的炭疽芽胞杆菌在42℃培育10~20d后,可失去形成芽胞的能力,同时毒力也会相应减弱。
细菌遗传变异的机制细菌是一类微生物,具有极强的适应能力和繁殖能力。
为了适应不断变化的环境,细菌会发生遗传变异。
细菌遗传变异的机制包括基因突变、基因重组和水平基因转移等。
基因突变是细菌遗传变异的一种重要机制。
基因突变是指DNA序列发生突然而不可逆的改变。
在细菌中,常见的基因突变包括点突变、插入突变和缺失突变等。
点突变是指DNA序列中的一个碱基被替换成另一个碱基,导致氨基酸序列发生改变。
插入突变是指DNA序列中插入一个或多个碱基,导致氨基酸序列发生移位。
缺失突变是指DNA序列中删除一个或多个碱基,导致氨基酸序列发生缺失。
这些突变可以使细菌的遗传信息发生改变,从而产生新的性状或适应新的环境。
基因重组也是细菌遗传变异的重要机制。
基因重组是指DNA分子之间的重新组合,从而形成新的DNA序列。
在细菌中,基因重组可以通过水平基因转移和DNA重组酶的作用实现。
水平基因转移是指细菌之间或细菌与其他生物之间的基因传递。
细菌可以通过共轭、转化和噬菌体介导的转导等方式进行基因的水平转移。
这种基因重组可以使细菌获得新的基因组合,从而具有新的性状或适应新的环境。
水平基因转移也是细菌遗传变异的重要机制之一。
水平基因转移是指细菌通过吸收自由DNA或噬菌体介导的转导,将外源基因导入到自身基因组中。
这种机制使细菌能够从其他细菌或环境中获取新的基因,从而增加了其适应新环境的能力。
水平基因转移在细菌的进化中起到了重要作用,特别是在抗生素抗性的形成过程中。
细菌遗传变异的机制是多样且复杂的。
基因突变、基因重组和水平基因转移等机制相互作用,共同促进了细菌的遗传多样性和适应性。
这种遗传变异为细菌在不断变化的环境中生存和繁殖提供了重要的遗传基础。
对细菌遗传变异机制的深入研究,不仅有助于理解细菌的进化过程,还对抗生素抗性的防治和微生物资源的利用具有重要意义。
简述细菌生长繁殖的方式及规律
一、细菌生长繁殖的方式:
细菌繁殖以二分裂法进行,其繁殖速度相当快,大多数细菌繁殖一代所需时间为20~30 分钟。
但个别细菌繁殖速度很慢,如结核分枝杆菌繁殖一代需18 小时。
二、细菌生产繁殖的规律:
细菌生长繁殖具有规律性,可分为4 期:
1、迟缓期:是细菌被接种于培养基后最初的一段时问,也是细菌对新环境的一种适应过程,此期约数小时,细菌并不分裂繁殖。
2、对数期: 又称指数期,是细菌分裂繁殖最快的时期,菌数量以几何级数增长,活菌数直接上升。
研究细菌的生物学性状及药敏试验以此时期细菌最好。
3、稳定期:由于营养物质的消耗,代谢产物的积聚,此期细菌的繁殖数与死亡数几乎相等,故活菌数保持稳定。
此期细菌的某些性状可以出现变异。
4、衰退期: 由于营养物质的耗尽,细菌繁殖越来越慢,活菌数急剧减少,死菌数超过活菌数。
此期细菌的生理活动趋于停滞。
细菌变异机制
细菌变异指的是细菌在繁殖过程中出现的基因突变,导致它们在遗传上发生了改变。
细菌的变异机制主要包括以下几种:
1. 点突变:细菌的DNA序列发生突变,其中一个碱基被另一
个替换,导致突变。
这种突变可以是由环境因素或自发发生的。
2. 编码序列的混乱:细菌的编码DNA序列发生插入或删除,
导致突变。
这种突变可能由DNA复制错误或外部因素引起。
3. 倒位:细菌染色体上的一个片段在同一染色体上发生倒位,导致基因的排列次序改变。
4. 基因组重排:细菌染色体上的一个或多个片段发生重排,导致基因组的结构发生改变。
这可能导致某些基因被丢失或增加,从而影响细菌的性状。
5. 质粒传输:细菌之间通过质粒传输基因,改变它们的遗传信息。
细菌的变异机制是其适应环境变化的重要策略,通过变异可以使细菌获得新的性状,以适应新的环境条件。
然而,细菌的变异也可能导致抗药性的增加,从而对人类健康造成威胁。
举例说明细菌变异的类型及意义细菌变异是指细菌在繁殖过程中发生基因突变或基因重组等遗传变化,从而导致细菌个体的遗传特征发生改变。
细菌变异可以分为点突变、插入突变、缺失突变、倒位突变、重组等多种类型。
这些变异的类型及其意义如下:1. 点突变:点突变是指细菌染色体上的一个碱基被替换成另一个碱基,导致细菌个体某个基因序列的改变。
例如,大肠杆菌中的突变基因可以导致细菌对某种抗生素的抵抗力增强,从而使该抗生素无法有效杀死细菌,造成抗生素耐药性的问题。
2. 插入突变:插入突变是指在细菌染色体的特定位置插入一段外源DNA序列,改变了细菌的遗传信息。
例如,细菌中的质粒可以通过插入突变的方式获得新的功能基因,使细菌能够分解特定的有机物,从而适应新的环境。
3. 缺失突变:缺失突变是指细菌染色体上的一个或多个基因序列被删除,导致细菌个体失去了某些功能。
例如,某些细菌中的缺失突变可以导致细菌在特定的培养基上无法生长,限制了它们的生存环境。
4. 倒位突变:倒位突变是指细菌染色体上的一段基因序列发生了倒位重排,改变了基因的顺序。
这种突变可能导致细菌个体的遗传信息发生错位,影响到细菌的生长和适应能力。
5. 重组:重组是指细菌染色体上的两个或多个基因序列发生了交换,导致新的基因序列组合。
这种重组可以增加细菌的遗传多样性,提高其适应环境的能力。
6. 染色体重排:染色体重排是指细菌染色体上的一段或多段基因序列发生了重新排列,导致基因的顺序发生改变。
这种重排可以使细菌在适应新环境时获得更好的优势。
7. 复制突变:复制突变是指细菌染色体上的一段基因序列发生了重复,导致细菌个体拥有多个相同的基因。
这种突变可能增加细菌的遗传稳定性,提高其抗逆能力。
8. 逆转录:逆转录是指细菌染色体上的mRNA被逆转录酶逆转录成cDNA,然后被整合到细菌染色体上。
这种逆转录能够改变细菌的基因组结构,增加基因的多样性。
9. 编辑突变:编辑突变是指细菌染色体上的mRNA被RNA编辑酶修饰,导致mRNA的碱基序列发生改变。
细菌的遗传、变异变异现象①形态结构:失去鞭毛→H-O变异②毒力~:卡介苗(BCG)③抗原性~:沙门氏菌属 H抗原④菌落~:S-R变异→失去LPS⑤酶活性~:大肠埃希氏菌→不发酵乳糖⑥耐药性~:痢疾志贺氏菌→依赖链霉素噬菌体(bacteriophage)感染细菌、真菌、放射菌或螺旋体等微生物的病毒毒性噬菌体(virulent phage)能在宿主细胞内复制增殖,最终使宿主菌裂解的噬菌体溶菌性周期/复制周期:噬菌体吸附宿主菌至裂解释放出子代噬菌体的过程温和/溶原性噬菌体(temperate/lysogenic phage)感染宿主菌后,将基因整合于宿主菌染色体中,随着宿主菌基因组的复制而复制,并随细菌的分裂而传代的噬菌体溶源性周期+溶菌性周期前噬菌体(prophage)整合在细菌染色体上的噬菌体基因溶原性细菌(lysogenicbacterium)染色体上带有前噬菌体的细菌应用①细菌的鉴定、分型②未知细菌的检测遗传物质染色体致病岛pathogenic island,PAI)致病菌基因组中编码与细菌毒力因子相关因子的外源DNA片段G+C百分比、密码子使用偏向性质粒(plasmid)细菌染色体外的遗传物质,存在细胞质中,具有独立复制能力的环状闭合或线性dsDNA基本特征①具有自我复制的能力:拷贝数低→紧密型质粒;拷贝数高→松弛型质粒②质粒携带的遗传信息可赋予宿主菌某些特性③可自行丢失、消除④具有转移性:接合、转化、转导⑤相容性与不相容性分类F/致育质粒(fertility plasmid)编码性菌毛,接合耐药性质粒(resistance plasmid)结合性耐药质粒R质粒(Rfactor)耐药传递因子 RTF耐药决定因子 r-det非结合性耐药质粒毒力质粒(virulence plasmid)编码细菌致病性相关毒力因子ST(Ent)质粒→大肠埃希氏菌耐热性肠毒素细菌素质粒Col质粒→大肠埃希氏菌的大肠菌素代谢质粒噬菌体基因组转位因子/跳跃基因(transposable element)可在细菌或其他生物的基因组中改变自身位置的独特DNA序列插入序列(insertion sequence,IS)细菌中最简单的转位因子,不携带与转位无关的基因转座子(transponson,Tn)携带与转位无关的其他特殊功能基因(耐药性基因~)整合子(integron,In)捕获外源性基因,多种耐药基因细菌变异机制基因突变自发突变、诱发突变自发突变率:10^-10~10^-6回复突变、抑制突变回复突变(reverse mutation)突变株经又一次突变可恢复为野生型的性状表型的回复基因转移、重组转化(transformation)受体菌直接摄取供体菌游离的DNA片段而获得新的遗传性状的过程。
举例说明细菌变异现象的类型细菌变异是指细菌在繁殖和生存过程中发生的遗传基因突变,导致其基因组的改变。
这种变异可以使细菌适应不同的环境压力和抵抗药物,从而增强其生存能力和繁殖能力。
下面将介绍细菌变异的十种类型:1. 点突变:细菌的DNA序列发生单个碱基的改变,例如一个碱基被替换成另一个碱基,或者一个碱基被插入或删除。
这种突变可能会导致细菌的基因表达发生变化,从而改变其生理特性。
2. 编码序列移位:细菌的基因编码序列发生移位,导致蛋白质的氨基酸序列发生改变。
这种变异可能会影响蛋白质的功能和稳定性。
3. 基因重组:细菌的DNA序列发生重组,导致基因的排列顺序发生改变。
这种变异可能会产生新的基因组合,从而赋予细菌新的特性。
4. 基因扩增:细菌的某个基因被复制多次,导致该基因的拷贝数增加。
这种变异可能会增加细菌对特定环境的适应能力。
5. 基因缩减:细菌的某个基因发生缩减,导致该基因的部分序列丢失。
这种变异可能会减少细菌对特定环境的适应能力。
6. 大规模基因重排:细菌的基因组发生大规模的重排,导致基因的排列顺序发生改变。
这种变异可能会产生新的基因组合,从而赋予细菌新的特性。
7. 基因水平转移:细菌之间发生基因的水平转移,导致细菌获得新的基因。
这种变异可以使细菌迅速适应新的环境。
8. 基因突变:细菌的基因发生突变,导致基因的功能发生改变。
这种变异可能会使细菌对抗药物的能力增强。
9. 基因重组:细菌的基因发生重组,导致基因的排列顺序发生改变。
这种变异可能会产生新的基因组合,从而赋予细菌新的特性。
10. 基因突变:细菌的基因发生突变,导致基因的功能发生改变。
这种变异可能会使细菌对抗药物的能力增强。
细菌变异是一种自然选择的结果,它使得细菌能够适应不同的环境和生存压力。
然而,细菌变异也是一种双刃剑,因为它可以导致细菌对抗药物的能力增强,从而对人类和动物的健康造成威胁。
因此,我们需要采取有效的措施来防止细菌的变异和传播,比如合理使用抗生素,加强卫生管理等。
细菌的遗传与变异细菌是微生物界中最简单、最原始的有生命之物。
它们可以通过不同的方式进行繁殖和传播,其中最常见的方式就是分裂繁殖。
在这种过程中,细菌体内的遗传物质会被复制并分配到新生细胞中,从而保证了后代基因的一致性。
但是,细菌的遗传物质并不总是保持不变的,它们也会发生变异,不同的遗传变异会对细菌的生长、繁殖和适应能力产生重要影响。
细菌的遗传基础细菌的遗传信息主要储存在细胞核外的染色体和质粒中。
与动物和植物的遗传物质DNA相似,细菌的DNA也是由基本的碱基单元构成的,包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
这些碱基组成了一个双螺旋的结构,形成了著名的DNA分子。
然而,与动物和植物的DNA不同的是,细菌的染色体和质粒并没有被包裹在细胞核内,它们可以自由地在细胞质中游动。
此外,一些细菌也具有病毒样的遗传物质,如噬菌体(bacteriophage)和质粒所编码的转座酶等。
细菌的遗传变异在细菌进展的漫长历史中,数以亿计的遗传变异发生了。
这些遗传变异可能来自于突变、水平基因转移、DNA重组等多种机制。
不同的遗传变异会导致细菌表现出不同的特点,如细菌的抗药性、营养代谢能力和环境适应性等。
突变突变是细菌发生遗传变异的最基本机制之一。
突变指的是DNA序列的改变,包括插入、缺失和替代等。
这些变异可能导致突变体表现出与野生型不同的性状,从而具有更高或更低的适应能力。
水平基因转移除了突变之外,细菌还可以通过水平基因转移的方式获得新的基因信息。
这种机制主要包括转化、转导和菌体接触等方式。
在水平基因转移过程中,来自其他种类细菌的遗传信息被导入到目标菌体中,从而产生新的融合基因或者替代基因等。
DNA重组DNA重组是指DNA分子的重组组合,其主要涉及到DNA的切割、重组和连接等过程。
这种机制可以产生新的基因片段、基因组重排和基因组切除等遗传变异模式。
细菌的遗传变异对生态环境的影响细菌的遗传变异对于生态环境的维持和稳定具有重要影响。