18.2.1矩形
- 格式:doc
- 大小:153.50 KB
- 文档页数:7
18.2.1矩形的判定基础知识、技能与思想方法1.矩形的判定3种:一个直角+平行四边形;对角线相等+平行四边形;三个直角+四边形 2.常常需要把解决线段或角的问题转化为证矩形的问题;典型例题例1已知:如图所示,平行四边形ABCD 中,E 、F 分别为AB 、CD 的中点,连接AF 、CE 、AC ,若CA=CB ,判断四边形AECF 是什么四边形? 并证明 分析: 解答:例2 已知:如图所示,l 1∥l 2,l 3交l 1、l 2于A 、C 两点,过A 、C 两点分别作两组内错角的平分线,交于B 、D 两点,判断四边形ABCD 的形状,并说明理由。
分析: 解答:例3已知:如图所示,在矩形ABCD 中,AB=3cm ,AD=4cm ,P 是AD 上的一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,求PE+PF 的值。
分析: 解答:FDC EAHGN M l 3l 2l1DCBAPFDCE BAO巩固练习1.下列各句判定矩形的说法是否正确?为什么?(1)对角线相等的四边形是矩形;( )(2)对角线互相平分且相等的四边形是矩形;() (3)有一个角是直角的四边形是矩形;() (4)有四个角是直角的四边形是矩形;() (5)四个角都相等的四边形是矩形;()(6)对角线相等,且有一个角是直角的四边形是矩形;() (7)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(8)对角线相等且互相垂直的四边形是矩形.() 2.判断并填空:(1)有一组对角是直角的四边形一定是矩形。
( ) (2)有一组邻角是直角的四边形一定是矩形。
( ) (3)对角线互相平分的四边形是矩形。
( ) (4)对角互补的平行四边形是矩形。
( ) (5)有三个角是是矩形,有一个角是是矩形。
(6)两组对边分别平行,且对角线的四边形是矩形。
(7)满足下列条件( )的四边形是矩形。
(A )有三个角相等 (B )有一个角是直角(C )对角线相等且互相垂直 (D )对角线相等且互相平分3.四边形ABCD 中∠A:∠B:∠C:∠D=1:1:1:1且AB=3cm,BC=4cm 则其对角线长为.4.在□ABCD 中,对角线AC,BD相交于点O,且∠OBC=∠OCB. □ABCD 是理由:5.已知:如图,在平行四边形ABCD 中,E 为CD 中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形。
第2课时 矩形的判定1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点) 一、情境导入 我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分; 2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究 探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC 中,AB =AC ,AD是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E .求证:四边形ADCE 是矩形.解析:首先利用外角性质得出∠B =∠ACB =∠F AE =∠EAC ,进而得到AE ∥BC ,即可得出四边形AEDB 是平行四边形,再利用平行四边形的性质得出四边形ADCE 是平行四边形,再根据AD 是高即可得出四边形ADCE 是矩形.证明:∵AB =AC ,∴∠B =∠ACB .∵AE 是△BAC 的外角平分线,∴∠F AE =∠EAC .∵∠B +∠ACB =∠F AE +∠EAC ,∴∠B =∠ACB =∠F AE =∠EAC ,∴AE ∥BC .又∵DE ∥AB ,∴四边形AEDB是平行四边形,∴AE 平行且等于BD .又∵AB =AC ,AD ⊥BC ,∴BD =DC ,∴AE 平行且等于DC ,故四边形ADCE 是平行四边形.又∵∠ADC =90°,∴平行四边形ADCE 是矩形. 方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,延长OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形如图,▱ABCD 各内角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC =180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB =12∠DAB ,∠HBA =12∠ABC ,∴∠HAB +∠HBA =12(∠DAB +∠ABC )=12×180°=90°,∴∠H =90°.同理∠HEF =∠F=90°,∴四边形EFGH 是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】 矩形的性质和判定的运用如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE =BF =CG =DH .(1)求证:四边形EFGH 是矩形;(2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF =2cm ,求矩形ABCD 的面积.解析:(1)证明四边形EFGH 对角线相等且互相平分;(2)根据题设求出矩形的边长CD 和BC ,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD .∵AE =BF =CG =DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO =GC .∵DG ⊥AC ,∴∠DGO =∠DGC =90°.又∵DG =DG ,∴△DGC ≌△DGO ,∴CD =OD .∵F 是BO 中点,OF =2cm ,∴BO =4cm.∵四边形ABCD 是矩形,∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =DB 2-DC 2=43cm ,∴S 矩形ABCD =4×43=163(cm 2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分. 【类型二】 矩形的性质和判定与动点问题如图所示,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形?(2)经过多长时间,四边形PQBA 是矩形?解析:(1)设经过t s 时,四边形PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s 时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可. 解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-t =3t ,解得t =6;(2)设经过t ′s ,四边形PQBA 为矩形,即AP =BQ ,所以t ′=26-3t ′,解得t ′=132. 方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、板书设计 1.矩形的判定有一角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形. 2.矩形的性质和判定的综合运用在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。
1.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=5 cm,求矩形对角线的长.
2.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.
3.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F, 求证:DF=DC
4.如图所示,在矩形ABCD中,AE⊥BD于E,对角线AC.BD相交于O,且BE∶ED=1∶3,AD=6㎝,求AE的长
5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD 的交点,且∠CAE=15°
(1)求证:△AOB为等边三角形;(2)求∠BOE度数.
6.已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.求证:(1)∠ADF=∠BCF;(2)AF⊥CF.
7.在平行四边形ABCD中,点E,F在直线AC上(点E在F左侧),,BE//DF。
⑴求证四边形BEDF使平行四边形
⑵若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长。
8.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,
(1)求证:四边形AECF为平行四边形;
(2)若△AEP是等边三角形,连结BP,求证:;
(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积
9.平行四边形ABCD的四个内角的平分线分别交于M,N,G,H四点,请猜猜四边形MNGH的形状,并说明理由
10.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.求证:(1)DA⊥AE;(2)AC=DE.
11.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题,并说明理由
(1)四边形ADEF是什么四边形;
(2)当△ABC满足什么条件时,四边形ADEF是矩形;
(3)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在.
12. 如图,在△ABC中,点O是AC边上的一个动点,过O点作直线MN‖B C,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形,请说明理由.
13. 如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为多少?
14.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB 之间有怎样的位置和数量关系?请证明你的结论.。