山东省泰安市2018年中考数学全真模拟试题四(含答案)
- 格式:doc
- 大小:460.00 KB
- 文档页数:12
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组<有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB 的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2018年市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•)如图是下列哪个几何体的主视图与俯视图()A.B. C.D.4.(3分)(2018•)如图,将一含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A .42、42B .43、42C .43、43D .44、436.(3分)(2018•)夏季来临,某超市试销A 、B 两种型号的风扇,两周共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .{x +x =5300200x +150x =30B .{x +x =5300150x +200x =30C .{x +x =30200x +150x =5300D .{x +x =30150x +200x =53007.(3分)(2018•)二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数y=x x与一次函数y=ax+b 在同一坐标系的大致图象是( )A .B .C .D .8.(3分)(2018•)不等式组{x −13−12x<−14(x −1)≤2(x −x )有3个整数解,则a 的取值围是( )A .﹣6≤a <﹣5B .﹣6<a ≤﹣5C .﹣6<a <﹣5D .﹣6≤a ≤﹣59.(3分)(2018•)如图,BM 与⊙O 相切于点B ,若∠MBA=140°,则∠ACB 的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2018年山东省泰安市中考数学试题(word版解析版)第一篇:2018年山东省泰安市中考数学试题(word版解析版) 泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:的结果是()A.-3B.0C.-1D.3 【答案】D 【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2.下列运算正确的是()A.【答案】D 【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.333详解:2y+y=3y,故A错误;B.C.D.y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3.如图是下列哪个几何体的主视图与俯视图()点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35则这组数据的中位数、平均数分别是()A.42、42B.43、42C.43、43D.44、43 【答案】B 【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A.C.【答案】C 【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.B型风扇销售了y台,详解:设A型风扇销售了x台,则根据题意列出方程组为:故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.. B.D.=43,= 7.二次函数图象是()的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致A.B.C.D.【答案】C 【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在(1)若点坐标为(2)若【答案】(1),求的值及图象经过、两点的一次函数的表达式;,求反比例函数的表达式.,;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由标为详解:(1)∵∴.,得到,由,得到.设点坐标为,则点坐,代入反比例函数解析式即可得到结论.为的中点,∵反比例函数图象过点∴.设图象经过、两点的一次函数表达式为:∴,解得,∴(2)∵∴ ∵∴∴.,.,.,则点坐标为.设点坐标为∵∴解得:∴∴∴两点在,,.图象上,点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22.如图,中,是平分上一点,.于点,是的中点,于点,与交于点,若,连接(1)求证:;.请你帮助小亮同学证明这一结论.是否为菱形,并说明理由.是菱形,理由见解析.(2)小亮同学经过探究发现:(3)若,判定四边形【答案】(1)证明见解析;(2)证明见解析;(3)四边形【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠FAG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED 的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键. 23.如图,在平面直角坐标系中,二次函数轴上有一点,连接.交轴于点、,交轴于点,在(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求(3)抛物线对称轴上是否存在点,使在请说明理由.【答案】(1)二次函数的解析式为点的坐标为,.;(2)当时,的面积取得最大值;(3)面积的最大值;为等腰三角形,若存在,请直接写出所有点的坐标,若不存【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE 于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,2解得:,所以二次函数的解析式为:y=;,(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,∴DF=﹣(),则点F(m,)=,),∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×(=∴当m=(3)y=PE=当PA=PE时,当PA=AE时,当PE=AE时,AE== ==),时,△ADE的面积取得最大值为.n)A0)的对称轴为x=﹣1,设P(﹣1,又E(0,﹣2),(﹣4,可求PA=,分三种情况讨论:,解得:n=1,此时P(﹣1,1);,解得:n=,此时点P坐标为(﹣1,);).,n=﹣2,解得:,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24.如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA 的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;2(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴2∴BM=MF•MH.2,∴DM=MF•MH,点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AG B 是解答本题的关键.第二篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。
2018年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3.00分)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3.00分)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3.00分)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3.00分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3.00分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3.00分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B 两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3.00分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3.00分)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3.00分)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60° D.70°10.(3.00分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 11.(3.00分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3.00分)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出得四个选项中,只有一个就是正确得,请把正确得选项选出来,每小题选对得3分,选错、不选或选出得答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0得结果就是( )A.﹣3B.0C.﹣1D.32.(3分)(2018•泰安)下列运算正确得就是( )A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图就是下列哪个几何体得主视图与俯视图( )A. B. C. D.4.(3分)(2018•泰安)如图,将一张含有30°角得三角形纸片得两个顶点叠放在矩形得两条对边上,若∠2=44°,则∠1得大小为( )A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组得8名同学在一次排球垫球测试中得成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据得中位数、平均数分别就是( )A.42、42B.43、42C.43、43D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号得风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B 两种型号得风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )A. B.C. D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c得图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内得大致图象就是( )A. B. C. D.8.(3分)(2018•泰安)不等式组有3个整数解,则a得取值范围就是( )A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣59.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB得度数为( )A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根得情况就是( )A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形得边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1、2,1、4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2得坐标为( )A.(2、8,3、6)B.(﹣2、8,﹣3、6)C.(3、8,2、6)D.(﹣3、8,﹣2、6)12.(3分)(2018•泰安)如图,⊙M得半径为2,圆心M得坐标为(3,4),点P就是⊙M上得任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB得最小值为( )A.3B.4C.6D.8二、填空题(本大题共6小题,满分18分。
2018年省市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3.00分)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3.00分)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3.00分)如图是下列哪个几何体的主视图与俯视图()A.B. C.D.4.(3.00分)如图,将一含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3.00分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3.00分)夏季来临,某超市试销A、B两种型号的风扇,两周共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A. B.C.D.7.(3.00分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系的大致图象是()A.B.C.D.8.(3.00分)不等式组有3个整数解,则a的取值围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3.00分)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3.00分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3.00分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3.00分)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2018年山东省泰安市中考数学试卷及解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年山东省泰安市中考数学试卷及解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年山东省泰安市中考数学试卷及解析的全部内容。
2018年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3。
00分)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3.00分)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3。
00分)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3。
00分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣α D.α﹣44°5.(3.00分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3.00分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3.00分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3.00分)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣59.(3。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A .42、42B .43、42C .43、43D .44、436.(3分)(2018•泰安)夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .{x +y =5300200x +150y =30B .{x +y =5300150x +200y =30C .{x +y =30200x +150y =5300D .{x +y =30150x +200y =53007.(3分)(2018•泰安)二次函数y=ax 2+bx +c 的图象如图所示,则反比例函数y=a x与一次函数y=ax +b 在同一坐标系内的大致图象是( )A .B .C .D .8.(3分)(2018•泰安)不等式组{x−13−12x <−14(x −1)≤2(x −a)有3个整数解,则a 的取值范围是( )A .﹣6≤a <﹣5B .﹣6<a ≤﹣5C .﹣6<a <﹣5D .﹣6≤a ≤﹣59.(3分)(2018•泰安)如图,BM 与⊙O 相切于点B ,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A .3B .4C .6D .8二、填空题(本大题共6小题,满分18分。
精选文档2018年山东泰安市中考数学试卷一、选择题(本大题共 12小题,在每题给出的四个选项中,只有一个是正确 的,请把正确的选项选出来,每题选对得 3分,选错、不选或选出的答案超 过一个,均记零分)1.(3分)(2018?泰安)计算:﹣(﹣ 2)+(﹣2)0的结果是()A .﹣3B .0C .﹣1D .32.(3 分)(2018?泰安)以下运算正确的选项是()33 6 . 236.( 2 ) 36. 3÷y ﹣25A .2y +y3y =9y=y=3yB y?y=yCDy3.(3 分)(2018?泰安)如图是以下哪个几何体的主视图与俯视图( )A .B .C .D .4.(3分)(2018?泰安)如图,将一张含有 30°角的三角形纸片的两个极点叠放在矩形的两条对边上,若∠ 2=44°,则∠1的大小为( )A .14°B .16°C .90°﹣αD .α﹣44°5.(3分)(2018?泰安)某中学九年级二班六组的 8名同学在一次排球垫球测试中的成绩以下(单位:个)35 38 42 44 40 47 45 45.精选文档则这组数据的中位数、均匀数分别是()A.42、42B.43、42C.43、43D.44、436.(3分)(2018?泰安)夏天到临,某商场试销共销售30台,销售收入5300元,A型电扇每台问A、B两种型号的电扇分别销售了多少台?若设扇销售了y台,则依据题意列出方程组为(A、B两种型号的电扇,两周内200元,B型电扇每台150元,A型电扇销售了x台,B型风)A.B.C.D.7.(3分)(2018?泰安)二次函数y=ax2+bx+c的图象以下图,则反比率函数y=与一次函数y=ax+b在同一坐标系内的大概图象是()A.B.C.D.8.(3分)(2018?泰安)不等式组有3个整数解,则a的取.精选文档值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣59.(3分)(2018?泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018?泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的状况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于311.(3分)(2018?泰安)如图,将正方形网格搁置在平面直角坐标系中,此中每个小正方形的边长均为1,△ABC经过平移后获取△A1B1C1,若AC上一点(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)12.(3分)(2018?泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的随意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B对于原点O对称,则AB的最小值为().精选文档A.3B.4C.6D.8二、填空题(本大题共6小题,满分18分。
山东省泰安市2018中考数学精编模拟试题4(扫描版,无答案)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省泰安市2018中考数学精编模拟试题4(扫描版,无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省泰安市2018中考数学精编模拟试题4(扫描版,无答案)的全部内容。
山东省泰安市2018中考数学精编模拟试题。
山东省泰安市2018年中考模拟试题数学(四)一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( C )A.B.C.D.2.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠13.已知a,b满足方程组,则a+b的值为()A.-4 B.4 C.-2 D.24.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或105.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球6.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是507.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<-29.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.410.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有( B )A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:3a2﹣6a+3= .12.实数的平方根为.13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k= .15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为.16.如图,已知直线y=-34x+3分别交x轴、y轴于点A、B,P是抛物线y=-12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-34x+3于点Q,则当PQ=BQ时,a的值是.三、解答下列各题(共72分)17.(6分)计算:(-2017)0+|1-2cos45°++(-)-2.18.(6分)化简•÷,并求值,其中a与2、3构成△ABC的三边,且a为整数.19.(6分)20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.20.(8分)2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?21.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)22.(8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1S3-S22的最大值,并求出此时a,b的值.23.(8分)2017年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.求当x的值至少为多少时,该服装商店才不会亏本?24.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25. (12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).(1)求此抛物线的解析式;(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.19. 证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.20. 解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.21. 解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.22.23. 解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.24. (1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.25. 解:(1)∵抛物线y=ax2+bx+c经过点C(0,3),顶点为M(﹣1,4),∴,解得:.∴所求抛物线的解析式为y=﹣x2﹣2x+3.(2)依照题意画出图形,如图1所示.令y=﹣x2﹣2x+3=0,解得:x=﹣3或x=1,故A(﹣3,0),B(1,0),∴OA=OC,△AO C为等腰直角三角形.设AC交对称轴x=﹣1于F(﹣1,y F),由点A(﹣3,0)、C(0,3)可知直线AC的解析式为y=x+3,∴y F=﹣1+3=2,即F(﹣1,2).设点D坐标为(﹣1,y D),则S△ADC=DF•AO=×|y D﹣2|×3.又∵S△ABC=AB•OC=×[1﹣(﹣3)]×3=6,且S△ADC=S△ABC,∴×|y D﹣2|×3.=6,解得:y D=﹣2或y D=6.∴点D的坐标为(﹣1,﹣2)或(﹣1,6).(3)如图2,点P′为点P关于直线CE的对称点,过点P′作PH⊥y轴于H,设P′E交y轴于点N.在△EON和△CP′N中,,∴△EON≌△CP′N(AAS).设NC=m,则NE=m,∵A(﹣3,0)、M(﹣1,4)可知直线AM的解析式为y=2x+6,∴当y=3时,x=﹣,即点P(﹣,3).∴P′C=PC=,P′N=3﹣m,在Rt△P′NC中,由勾股定理,得:+(3﹣m)2=m2,解得:m=.∵S△P′NC=CN•P′H=P′N•P′C,∴P′H=.由△CHP′∽△CP′N可得:,∴CH==,∴OH=3﹣=,∴P′的坐标为(,).将点P′(,)代入抛物线解析式,得:y=﹣﹣2×+3=≠,∴点P′不在该抛物线上.。