高三人教版数学(理)一轮复习课时作业 第八章 平面解析几何 第五节
- 格式:doc
- 大小:205.68 KB
- 文档页数:6
第八章 平面解析几何 第五节 椭圆[A 组 根底对点练]1.方程x 2|m |-1+y 22-m=1表示焦点在y 轴上的椭圆,如此m 的取值X 围为( )A .⎝⎛⎭⎪⎫-∞,32B .(1,2)C .(-∞,0)∪(1,2)D .(-∞,-1)∪⎝ ⎛⎭⎪⎫1,32解析:依题意得不等式组⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1,解得m <-1或1<m <32.答案:D2.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为53,椭圆上一点P 到两焦点距离之和为12,如此b =( )A .8B .6C .5D .4解析:由题意可得e =ca =53,由椭圆上一点P 到两焦点距离之和为12,可得2a =12,即有a =6,c =25,b =a 2-c 2=4.答案:D3.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,如此椭圆长轴长的最小值为( )A .1B . 2C .2D .22解析:设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,12×2cb =1⇒bc =1,2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时,等号成立.答案:D4.(2020·东北三校联考)假如椭圆mx 2+ny 2=1的离心率为12,如此mn=( )A .34B .43C .32或233D .34或43解析:假如焦点在x 轴上,如此方程化为x 21m+y 21n=1,依题意得1m -1n 1m=14,所以m n =34;假如焦点在y 轴上,如此方程化为y 21n+x 21m=1,同理可得m n =43.所以所求值为34或43.答案:D5.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过点F 2的直线l 交C 于A ,B 两点.假如△AF 1B 的周长为43,如此C 的方程为( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1D .x 212+y 24=1 解析:由e =ca =33,又△AF 1B 的周长为|AF 1|+|AB |+|BF 1|=|AF 1|+(|AF 2|+|BF 2|)+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=2a +2a =43,解得a =3,故c =1,b =a 2-c 2=2,故所求的椭圆方程为x 23+y 22=1.答案:A6.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,假如椭圆上存在一点P ,使(OP →+OF 2)·PF 2=0(O 为坐标原点),如此△F 1PF 2的面积是( )A .4B .3C .2D .1解析:因为(OP →+OF 2)·PF 2=(OP →+F 1O )·PF 2=F 1P ·PF 2=0, 所以PF 1⊥PF 2,∠F 1PF 2=90°.设|PF 1|=m ,|PF 2|=n ,如此m +n =4,m 2+n 2=12,所以mn =2,所以S △F 1PF 2=12mn =1.答案:D7.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线,与椭圆交于A ,B 两点,O 为坐标原点,如此△OAB 的面积为( )A .43B .53C .54D .103解析:由题意知椭圆的右焦点F 的坐标为(1,0),如此直线AB 的方程为y =2x ⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,所以S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.答案:B8.(2021·某某某某模拟)椭圆E :x 24+y 22=1,直线l 交椭圆于A ,B 两点,假如AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,如此l 的方程为( )A .2x +y =0B .x -2y -52=0C .2x -y -2=0D .x -4y -92=0解析:设A (x 1,y 1),B (x 2,y 2),如此x 214+y 212=1,x 224+y 222=1,两式作差并化简整理得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2,而x 1+x 2=1,y 1+y 2=-2,所以y 1-y 2x 1-x 2=14,直线l 的方程为y +1=14⎝ ⎛⎭⎪⎫x -12,即x -4y -92=0.答案:D9.直线l 经过椭圆的一个顶点和一个焦点,假如椭圆中心到l 的距离为其短轴长的14倍,如此该椭圆的离心率为________.解析:设|OB |为椭圆中心到l 的距离,l 与椭圆交于顶点A 和焦点F (图略),如此|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.答案:1210.椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B .假如△FAB 的周长的最大值是12,如此该椭圆的离心率是________.解析:设椭圆的右焦点为F ′,如下列图,由椭圆定义知, |AF |+|AF ′|=|BF |+|BF ′|=2a .又△FAB 的周长为|AF |+|BF |+|AB |=2a -|AF ′|+2a -|BF ′|+|AB | =4a -(|AF ′|+|BF ′|-|AB |)≤4a , 当且仅当AB 过右焦点F ′时等号成立. 此时4a =12,如此a =3.故椭圆方程为x 29+y 25=1,所以c =2,所以e =c a =23.答案:2311.点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,假如PF 1⊥PF 2,tan ∠PF 2F 1=2,如此椭圆的离心率e =________.解析:依题意,设|PF 2|=m ,如此有|PF 1|=2m ,|F 1F 2|=5m ,该椭圆的离心率是e =|F 1F 2||PF 1|+|PF 2|=5m 3m =53.答案:5312.(2021·某某永州模拟)动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎪⎫3,12.(1)求m 的值; (2)假如直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA →·OB →=2(O 为坐标原点),求k 的值.解析:(1)由0<m <2,得2m <4,可知:曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b2=1,把点N ⎝⎛⎭⎪⎫3,12代入得34+14b 2=1,解得b 2=1,由c 2=a 2-b 2,解得c 2=3,所以m =3.(2)由(1)知曲线C 的方程为x 24+y 2=1,设A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝ ⎛⎭⎪⎫14+k 2x 2+22kx +1=0, 如此有Δ=4k 2-1>0,得k 2>14. x 1+x 2=-82k1+4k 2,x 1x 2=41+4k 2,如此OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k 21+4k 2=2.解得k 2=13>14, 所以k 的值为±33.[B 组 素养提升练]1.(2020·某某某某调研)A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,BQ 的斜率分别为m ,n ,假如点A 到直线y =1-mnx 的距离为1,如此该椭圆的离心率为( ) A .12B .24C .13D .22解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),如此x 209+y 20b 2=1,k AP =m =y 0x 0+3,k BQ =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mnx =9-b 23x ,即9-b 2x -3yA 到直线y =1-mnx 的距离为1,∴|-39-b 2|9-b 2+9==1,解得b 2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:B2.(2021·某某三市联考)离心率为63的椭圆x 2a 2+=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233.(1)求此椭圆的方程;(2)直线y =kx +2与椭圆交于C ,D 两点,假如以线段CD 为直径的圆过点E (-1,0),求k 的值.解析:(1)设焦距为2c , ∵e =c a=63,a 2=b 2+c 2,∴ba =33, 由|AB |=233,易知b 2a=33, ∴b =1,a =3,∴椭圆方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1.设C (x 1,y 1),D (x 2,y 2),如此x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,假如以CD 为直径的圆过E 点,如此EC →·ED →=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4,如此(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x1x 2+(2k +1)(x 1+x 2)+5=9〔k 2+1〕1+3k 2-12k 〔2k +1〕1+3k 2+5=0,解得k =76,满足k 2>1.3.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c .(1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.假如|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c , 代入椭圆,得c 2a2+y 2b 2=1.解得|y |=b 2a=|AF 2|,即b 2a=36c ,∴a 2-c 2=36ac .∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0),如此直线MP 的方程为y =y 0-b x 0x +b .令y =0,得点R 的横坐标为bx 0b -y 0.直线NP 的方程为y =y 0+bx 0x -b .令y =0,得点Q 的横坐标为bx 0b +y 0.∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.。
第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。
2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业的全部内容。
第五节 椭圆课时作业 A 组——基础对点练1.已知椭圆错误!+错误!=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2 B .3 C .4 D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B 。
答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k 〈4D .0〈k 〈4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程错误!+错误!=1表示焦点在x 轴上的椭圆,可得0<k 〈4,故选D 。
答案:D3.已知椭圆的中心在原点,离心率e =错误!,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.错误!+错误!=1 B .错误!+错误!=1 C.错误!+y 2=1D .错误!+y 2=1解析:依题意,可设椭圆的标准方程为x 2a2+错误!=1(a 〉b 〉0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =错误!=错误!,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为错误!+错误!=1,故选A.答案:A4.椭圆错误!+错误!=1(a 〉b 〉0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.错误! B .错误! C 。
课时作业
一、选择题
1.(2014·浙江绍兴一模)椭圆x 225+y 2
9=1上一点M 到焦点F 1的距离为2,N 是MF 1
的中点,则|ON |等于
( )
A .2
B .4
C .8
D.3
2
B [连接MF 2,已知|MF 1|=2,又|MF 1|+|MF 2|=10,
∴|MF 2|=10-|MF 1|=8. 如图,|ON |=1
2|MF 2|=4.故选B.]
2.已知椭圆的长轴长是8,离心率是3
4,则此椭圆的标准方程是
( )
A.x 216+y 27=1
B.x 216+y 27=1或x 27+y 2
16=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 2
16=1 B [∵a =4,e =3
4,∴c =3. ∴b 2=a 2-c 2=16-9=7.
∴椭圆的标准方程是x 216+y 27=1或x 27+y 2
16=1.]
3.(2014·广东韶关4月调研)F 1,F 2分别是椭圆x 2a 2+y 2
b 2=1(a >b >0)的左、右焦点,与直线y =b 相切的⊙F 2交椭圆于点E ,E 恰好是直线EF 1与⊙F 2的切点,则椭圆的离心率为
( )
A.32
B.33
C.53
D.54
C [依题意,△EF 1F 2为直角三角形,∠F 1EF 2=90°, |F 1F 2|=2c ,|EF 2|=b ,由椭圆的定义知|EF 1|=2a -b , 又|EF 1|2+|EF 2|2=|F 1F 2|2,
即(2a -b )2+b 2=(2c )2,整理得b =2
3a ,
所以,e 2=c 2
a 2=a 2-
b 2a 2=59,故e =5
3.选C.]
4.(2014·沈阳二中月考)已知椭圆x 24+y 2
=1的两焦点为F 1,F 2,点M 在椭圆上,MF 1―→,·MF 2―→,=0,则M 到y 轴的距离为
( )
A.233
B.263
C.33
D. 3
B [由条件知,点M 在以线段F 1F 2为直径的圆上, 该圆的方程是x 2+y 2=3,即y 2=3-x 2, 代入椭圆方程得x 24+3-x 2=1,解得x 2=8
3, 则|x |=263,即点M 到y 轴的距离为263.]
5.(2014·温州模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =1
2,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)
( )
A .必在圆x 2+y 2=2内
B .必在圆x 2+y 2=2上
C .必在圆x 2+y 2=2外
D .以上三种情形都有可能 A [由已知得e =c a =12,则c =a
2. 又x 1+x 2=-b a ,x 1x 2=-c
a ,
所以x 21+x 22=(x 1+x 2)2
-2x 1x 2=b 2
a 2+2c a =
b 2+2ca a 2=b 2+a 2a 2<2a 2a 2=2,
因此点P (x 1,x 2)必在圆x 2+y 2=2内.] 二、填空题
6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为3
2,且椭圆上一点到椭圆的两个焦点的距离之和为12,则椭圆G 的方程为________________. 解析 设椭圆方程为x 2a 2+y 2
b 2=1(a >b >0),根据椭圆定义知2a =12,即a =6,
由c a =32,得c =33,b 2=a 2-c 2=36-27=9,故所求椭圆方程为x 236+y
2
9=1.
答案 x 236+y 2
9=1
7.(2014·乌鲁木齐第一次诊断)如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为________.
解析 设椭圆的方程为x 2a 2+y 2
b 2=1(a >b >0),
∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2
<ac ,即a 2
-c 2
<ac ,故⎝ ⎛⎭
⎪⎫c a 2+c
a -1>0,即e 2+e -1>0,e >5-12或e
<
-5-12,又0<e <1,∴5-1
2<e <1.
答案 ⎝ ⎛⎭⎪⎫5-12,1
三、解答题
8.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为6
3,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).
(1)求椭圆G 的方程; (2)求△P AB 的面积.
解析 (1)由已知得c =22,c a =6
3.解得a =23, 又b 2=a 2-c 2=
4.
所以椭圆G 的方程为x 212+y 2
4=1. (2)设直线l 的方程为y =x +m .
由⎩⎪⎨⎪
⎧y =x +m ,x 212+y 24=1得4x 2+6mx +3m 2-12=0.①
设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2), AB 中点为E (x 0,y 0), 则x 0=
x 1+x 22=-3m 4,y 0=x 0+m =m
4.
因为AB 是等腰△P AB 的底边,所以PE ⊥AB . 所以PE 的斜率k =
2-m
4
-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2.所以|AB |=3 2.
此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2
=32
2, 所以△P AB 的面积S =12|AB |·d =9
2.
9.(2013·烟台一模)设A (x 1,y 1),B (x 2,y 2)是椭圆C :y 2a 2+x 2
b 2=1(a >b >0)上两点,已知m =⎝ ⎛⎭⎪⎫x 1b ,y 1a ,n =⎝ ⎛⎭⎪⎫
x 2b ,y 2a ,若m·n =0且椭圆的离心率e =32,短轴长为
2,O 为坐标原点. (1)求椭圆的方程;
(2)△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 解析 (1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =3
2. ∴a =2,c =
3.∴椭圆的方程为y 24+x 2
=1. (2)①当直线AB 的斜率不存在,即x 1=x 2时, y 1=-y 2,由m·n =0得
x 21-y 2
14
=0,∴y 21=4x 21.
又A (x 1,y 1)在椭圆上,
∴x 21+4x 2
1
4
=1,
∴|x 1|=22,|y 1|=2,△AOB 的面积S =12|x 1||y 1-y 2|=1
2|x 1|·2|y 1|=1. ②当直线AB 的斜率存在时,设AB 的方程为y =kx +b (其中b ≠0),代入y 24+x 2
=1,得
(k 2+4)x 2+2kbx +b 2-4=0.
Δ=(2kb )2-4(k 2+4)(b 2-4)=16(k 2-b 2+4), x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4
k 2+4,
由已知m·n =0得x 1x 2+y 1y 2
4=0,
∴x 1x 2+(kx 1+b )(kx 2+b )4=0,代入整理得2b 2-k 2=4,代入Δ中,满足
题意,
∴△AOB 的面积S =1
2·|b |1+k 2
|AB |=1
2|b |·(x 1+x 2)2-4x 1x 2=
|b |4k 2-4b 2+16k 2+4
=4b 2
2|b |=1.
∴△AOB的面积为定值1。