解不等式学生
- 格式:doc
- 大小:245.00 KB
- 文档页数:3
初二数学不等式解集表示方法不等式是数学中常见的一种表示关系的方式。
在初二数学中,学生将学习如何解不等式,并且要使用特定的方法来表示不等式的解集。
本文将介绍初二数学中常用的不等式解集表示方法。
一、不等式的解集表示方法解不等式时,需要找到使不等式成立的变量取值范围。
这个取值范围称为不等式的解集。
在表示不等式的解集时,常用以下几种方法:1. 图形表示法:对于简单的不等式,可以将其转化为图形,用图形表示不等式的解集。
例如,不等式x > 2表示x在2的右边,可以用一条竖直线表示,然后在这条竖直线的右边标上一个开圈,表示不包括2。
这样,表示了不等式x > 2的解集。
2. 区间表示法:对于一些特定的不等式,可以使用区间表示法来表示解集。
区间表示法使用中括号和圆括号来表示开闭区间。
例如,不等式3 ≤ x ≤ 7可以用区间表示法表示为[3, 7]。
3. 不等式符号表示法:对于简单的不等式,可以直接使用不等式符号表示解集。
例如,不等式x > 5可以表示为x > 5。
4. 集合表示法:对于一些复杂的不等式,可以使用集合表示法来表示解集。
集合表示法使用大括号来表示集合。
例如,不等式x^2 - 4 < 0的解集可以表示为{x | -2 < x < 2}。
二、解不等式的方法解不等式的方法主要有以下几种:1. 图像法:对于一些简单的不等式,可以绘制图像来解不等式。
首先,将不等式转化为等式,然后绘制等式的图像。
接着,根据不等式的符号确定图像的左右区间,并标出解集。
例如,对于不等式x + 2 > 0,可以将其转化为等式x + 2 = 0,得出x = -2。
将x = -2绘制在数轴上,并在-2的右边标上箭头,表示解集为x > -2。
2. 正负数法:适用于一些关于不等式的基本问题。
根据不等式的正负号和绝对值的性质,可以确定不等式的解集。
例如,对于不等式2x - 3 < 7,可以将其转化为等式2x - 3 = 7,得出x = 5。
专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
不等式的解法举解一元一次不等式、一元二次不等式的基本思想 1ax +b >0(1)若a >0时,则其解集为{x |x >-a b } (2)若a <0时,则其解集为{x |x <-ab}(3)若a =0时,b >0,其解集为R ≤0,其解集为2c bx ax ++2>0(a ≠0)高一,我们学习一元二次不等式时知道,任何一个一元二次不等式,最后都可化为: c bx ax ++2>0或c bx ax ++2<0(a >0)的形式,而且我们已经知道,一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关(1)若判别式Δ=b 2-4ac >0,设方程c bx ax ++2=0的二根为x 1,x 2(x 1<x 2),则①a >0时,其解集为{x |x <x 1,或x >x 2};②a <0时,其解集为{x |x 1<x <x 2}(2)若Δ=0,则有:①a >0时,其解集为{x |x ≠-ab,x ∈R };②a <0时,其解集为 (3)若Δ<0,则有:①a >0时,其解集为R ;②a <0时,其解集为类似地,可以讨论c bx ax ++2<0(a ≠0)的解集3.不等式|x |<a 与|x |>a (a >0)的解集1x |<a (a >0)的解集为:{x |-a <x <a },几何表示为:2x |>a (a >0)的解集为:{x |x >a 或x <-a },几何表示为:二、讲解新课: 不等式的有关概念1同解不等式:两个不等式如果解集相等,那么这两个不等式就叫做同解不等式2同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形就叫做同解变形过去我们学过的一元一次不等式解法,如去分母、去括号、移项、合并同类项等等,都是同解变形,因此最后得到的解(不等式)就是原不等式的解由此,我们解不等式,应尽量保证是同解变形3.(1))()(x g x f >0⇔f (x )g(x )>0;(2))()(x g x f <0⇔f (x )g(x )<0; (3))()(x g x f ≥0⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ;(4))()(x g x f ≤0⇔⎩⎨⎧≠≤0)(0)()(x g x g x f三、讲解范例:例1 解不等式|552+-x x |<1分析:不等式|x |<a (a >0)的解集是{x |-a <x <a },这时,我们用552+-x x 替换|x |<a (a >0)的解集中的x ,原不等式转化为-1<552+-x x <1即⎩⎨⎧->+-<+-15515522x x x x 解这个不等式组,其解集就是原不等式的解集 解:原不等式可转化为-1<552+-x x <1即⎩⎨⎧->+-<+-15515522x x x x ②①解不等式①,得解集为{x |1<x <4};解不等式②,得解集为{x |x <2,或x >3}原不等式的解集是不等式①和不等式②的解集的交集,即{x |1<x <4}∩{x |x <2,或x >3}={x |1<x <2,或3<x <4} 故原不等式的解集是:{x |1<x <2,或3<x <4}点评:解不等式时,一定要搞清楚各个不等式之间的交、并等的关系在本例中,不等式①和不等式②是“交”的关系,必要时可借助数轴的直观作用要注意不等式是否带“=”号,只有这样,才能更准确无误地写出不等式的解集例2 解不等式322322--+-x x x x <0分析:这是一个分式不等式,其左边是两个关于x 的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:⎪⎩⎪⎨⎧>--<+-⎪⎩⎪⎨⎧<-->+-.032,023 0330232222x x x x x x x x 或 因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到另解:根据积的符号法则,可以将原不等式等价变形为 (x 2-3x +2)(x 2-2x -3)<0 即(x +1)(x -1)(x -2)(x -3)<0 令(x +1)(x -1)(x -2)(x -3)=0 可得零点x =-1或1,或2或3,将数轴分成五部分(如图)由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}说明:(1)让学生注意数轴标根法适用条件;(2)让学生思考332322--+-x x x x ≤0的等价变形例3 解不等式2315222+---x x x x >1分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解解:原不等式等价变形为:2315222+---x x x x -1>0通分整理得:233222+---x x x x >0等价变形为:(x 2-2x +3)(x 2-3x +2)>0即 (x +1)(x -1)(x -2)(x -3)>0由数轴标根法可得所求不等式解集为:{x |x <-1或1<x <2或x >3} 说明:此题要求学生掌握较为一般的分式不等式的转化与求解 四、课堂练习:1解下列不等式:(1)|3x -4|≤19;(2)|21-x +4|>3;(3)30+7x -2x 2<0 (4)3x 2-5x +4>0;(5)6x 2+x -2≤02解下列不等式:(1)|x 2-48|>16; (2)|x 2-3x +1|<53解下列不等式:(1)1272322+-+-x x x x ≥0;(2)x (x -3)(x +1)(x -2)≤0答案:(1)1272322+-+-x x x x ≥00)4)(3()2)(1(≥----⇒x x x x),4()3,2[]1,(+∞-∞∈⇒ x(2)x (x -3)(x +1)(x -2)≤0]3,2[]0,1[ -∈⇒x1.解关于x 的不等式)()(ab x b ab x a +>- 解:将原不等式展开,整理得:)()(b a ab x b a +>- 讨论:当b a >时,ba b a ab x -+>)(当b a =时,若b a =≥0时φ∈x ;若b a =<0时R x ∈ 当b a <时,ba b a ab x -+<)(2.解关于x 的不等式0)1(2>---a a x x3.关于x 的不等式02<++c bx ax 的解集为}212|{->-<x x x 或,求关于x的不等式02>+-c bx ax 的解集. 解:由题设0<a 且25-=-a b , 1=ac 从而 02>+-c bx ax 可以变形为02<+-acx a b x 即 01252<+-x x ∴221<<x4.关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围.5.若函数)8(6)(2++-=k kx kx x f 的定义域为R ,求实数k 的取值范围6.解不等式0322322<--+-x x x x 略解一(分析法)3211312103202322<<<<-⇒⎩⎨⎧<<-><⇒⎩⎨⎧<-->+-x x x x x x x x x 或或或φ⇒⎩⎨⎧>-<<<-⇒⎩⎨⎧>--<+-312103202322x x x x x x x 或 ∴3211<<<<-x x 或 解二:(列表法)原不等式可化为0)1)(3()2)(1(<+---x x x x 列表(略)注意:按根的由小到大排列解三:(标根法)作数轴;标根;画曲线,定解小结:在某一区间内,一个式子是大于0(还是小于0)取决于这个式子的各因式在此区间内的符号;而区间的分界线就是各因式的根;上述的列表法和标根法,几乎可以使用在所有的有理分式与高次不等式,其中最值得推荐的是“标根法”-1 01234-28.解不等式 62323+>+x x x解:原不等式化为 0)2)(2)(3(>-++x x x ∴原不等式的解为232-<<->x x 或9.解不等式 0)2)(54(22<++--x x x x解:∵022>++x x 恒成立,∴原不等式等价于0542<--x x 即-1<x <5 10.解不等式 0)2)(1()1()2(32<-+-+x x x x解:原不等式等价于0)2)(1)(1(<-+-x x x 且 1,2≠-≠x x ∴原不等式的解为}21221|{-<-<<-<<x x x x 或或 若原题目改为0)2)(1()1()2(32≤-+-+x x x x 呢? 11.解不等式80)4)(1)(2)(5(-≤--++x x x x 解:原不等式等价于080)2)(20(22≤+-+-+x x x x即 0120)(22)(222≤++-+x x x x ⇒0)10)(12(22≤-+-+x x x x⇒0)2411)(2411)(3)(4(≤---+---+x x x x ∴3241124114≤≤+-+-≤≤-x x 或 12.解不等式1116-<-x x 解:原不等式等价于01)3)(5(>-+-x x x ,∴原不等式的解为:513><<-x x 或 13. k 为何值时,下式恒成立:13642222<++++x x kkx x解:原不等式可化为:0364)3()26(222>++-+-+x x k x k x ,而03642>++x x ∴原不等式等价于0)3()26(22>-+-+k x k x 由0)3(24)26(2<-⨯⨯--=∆k k 得1<k <3补充例题1解下列不等式:(1)x 2-2|x |-3>0;(2)2-3x <|2x -1|解:(1)由x 2-2|x |-3>0⇔|x |2-2|x |-3>0⇔(|x |-3)(|x |+1)>0⇔|x |>3⇔x >3或x <-3 故原不等式的解集为{x |x <-3,或x >3}(2)2-3x <|2x -1|⇔2x -1>2-3x 或2x -1<-(2-3x )⇔x >53或x >1⇔x 5故原不等式的解集为{x |x >53} 2解不等式|x 2-9|≤x +3解:|x 2-9|≤x +3-(x +3)≤x 2-9≤x +3⎩⎨⎧≤≤-≥-≤⇔⎩⎨⎧≤--≥-+⇔43230120622x x x x x x x 或 ⇔2≤x ≤4或x =-3故原不等式的解集是{x |2≤x ≤4,或x =-3}3解不等式|2x +1|+|x -2|>4分析:解含多个绝对值符号不等式的方法之一是:分段讨论,将各段的解集并起来作为最后结果解:|2x +1|+|x -2|>4⎪⎩⎪⎨⎧>--+--<⇔4)2()12(21x x x ⎩⎨⎧>-++>⎪⎩⎪⎨⎧>--+≤≤-421224)2(12221x x x x x x 或或 ⇔x <-1或1<x ≤2或x >2⇔x <-1,或x >1故原不等式组的解集是{x |x <-1或x >1}4解关于x 的不等式:(1)ax -2>3x +b (a ,b ∈R );(2)ax 2-(a +1)x +1<0,其中a >0 解:(1)原不等式为:(a -3)x >2+b当a -3>0,即a >3时,不等式解集为{x |x >32-+a b} 当a -3=0,即a =3时,若2+b <0,即b <-2时,不等式的解集为R ;若2+b ≥0,即b ≥-2时,不等式无解当a -3<0,即a <3时,不等式解集为{x |x <32-+a b} (2)∵a >0 ∴原不等式⇔(x -1)(x -a1)<0 当a >1时,不等式的解集为{x |a1<x <1} 当0<a <1时,不等式的解集为{x |1<x <a1}当a =1时,不等式的解集为∅5定义在R 上的减函数f (x ),如果不等式组⎩⎨⎧-+>-+>-+)1()13()2()1(22x kx f kx f k f x kx f 对任何x ∈[0,1]都成立,求k 的取值范围解:原问题⎩⎨⎧-+<-+<-+⇔2211321x kx kx k x kx 在[0,1]内恒成立 ⎩⎨⎧<-+>++-⇔0220122kx x k kx x 在x ∈[0,1]内恒成立[][]⎪⎩⎪⎨⎧--=++-=⇔上恒负在上恒正在1,022)(1,01)(2221kx x x f k kx x x f [][]⎩⎨⎧⇔上的最大值为负在上的最小值为正在1,0)(1,0)(21x f x f .211211为所求<<-⇔⎪⎩⎪⎨⎧<->⇔k k k。
初中解不等式的方法解不等式是初中数学中的一个重要内容,也是学生们比较容易混淆的一个知识点。
不等式的解法有很多种,接下来我们将介绍几种常见的解不等式的方法。
一、图像法。
图像法是解不等式的一种直观方法。
首先,我们将不等式转化成方程,然后画出对应方程的图像,最后根据图像来确定不等式的解集。
例如,对于不等式2x + 3 > 7,我们可以首先将其转化为方程2x + 3 = 7,然后画出y = 2x + 3和y = 7的图像,最后确定不等式的解集为x > 2。
二、代数法。
代数法是解不等式的一种常用方法。
通过代数运算来确定不等式的解集。
例如,对于不等式3x 5 < 7,我们可以通过移项和合并同类项的方式来解得x < 4。
三、区间法。
区间法是解不等式的一种简便方法。
将不等式两边的式子化简成一个或多个不等式,然后通过判断式子的正负来确定不等式的解集。
例如,对于不等式2x^2 5x + 3 > 0,我们可以先求出方程2x^2 5x + 3 = 0的根,然后根据根的位置来确定不等式的解集。
四、试数法。
试数法是解不等式的一种实用方法。
通过代入一些特定的数来验证不等式的解集。
例如,对于不等式x^2 4 < 0,我们可以代入一些特定的数如0、1、-1等来验证不等式的解集为-2 < x < 2。
五、绝对值法。
绝对值法是解不等式的一种特殊方法。
通过绝对值的性质来确定不等式的解集。
例如,对于不等式|2x 3| < 5,我们可以根据绝对值的定义来分情况讨论,最后确定不等式的解集为-1 < x < 4。
六、图形法。
图形法是解不等式的一种直观方法。
通过画出不等式对应的图形来确定不等式的解集。
例如,对于不等式x^2 4x + 3 > 0,我们可以通过画出y = x^2 4x + 3的图形来确定不等式的解集为x < 1或x > 3。
以上就是初中解不等式的几种常见方法,希望同学们能够通过学习掌握这些方法,提高解不等式的能力。
高中数学不等式题解题方法高中数学中,不等式是一个重要的考点,也是学生们普遍感到困惑的一个难点。
解不等式题需要掌握一定的方法和技巧,下面我将以具体的题目为例,详细介绍高中数学不等式题的解题方法。
一、一元一次不等式1. 题目:求解不等式2x + 3 > 5。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到2x > 2。
然后,将不等式两边都除以2,得到x > 1。
所以,不等式的解集为{x | x > 1}。
2. 题目:求解不等式3x - 4 ≤ 7。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到3x ≤ 11。
然后,将不等式两边都除以3,得到x ≤ 11/3。
所以,不等式的解集为{x | x ≤ 11/3}。
通过以上两个例子,我们可以总结出解一元一次不等式的方法:将不等式中的常数项移到一边,然后将不等式两边都除以系数,最后根据不等号的方向确定解集。
二、一元二次不等式1. 题目:求解不等式x^2 - 3x + 2 > 0。
解析:这是一个一元二次不等式,我们可以通过求解方程来确定不等式的解集。
首先,将不等式转化为方程x^2 - 3x + 2 = 0。
然后,求解方程得到x = 1或x = 2。
接下来,我们需要确定不等式在这两个解的两侧的取值情况。
取一个介于1和2之间的数,比如1.5,代入不等式中,得到1.5^2 - 3(1.5) + 2 = 0.25 > 0。
所以,不等式在x = 1和x = 2之间是大于0的。
综合起来,不等式的解集为{x | 1 < x < 2}。
通过以上例子,我们可以总结出解一元二次不等式的方法:先求解方程,然后确定不等式在解的两侧的取值情况,最后根据不等号的方向确定解集。
三、绝对值不等式1. 题目:求解不等式|2x - 1| > 3。
初二数学不等式的解集知识点总结初二数学不等式的解集知识点总结漫长的学习生涯中,大家最不陌生的就是知识点吧!知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的初二数学不等式的解集知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初二数学不等式的解集知识点总结1不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
相信上面的知识同学们已经能很好的掌握了,希望同学们在平时认真学习,很好的把每一个知识点掌握。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
常见不等式的解法(教师版)一、一元一次不等式 解下列关于x 的不等式1、2x+3>52、-2x+5<63、ax>14、不等式3(x +1)≥5x -9的正整数解是_________5、已知关于x 的不等式(3a -2)x +2<3的解集是41->x ,则a =______.二、一元二次不等式1、22x ≥ 2、2(1)2x -< 3、x 2+x -2≤4 4、若0<a <1,则不等式(x -a )(x -a 1)<0的解是______.a <x <a 15、已知不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121x x ,则b a +的值为______.-146、不等式2x 2-3|x |-35>0的解为______..x <-5或x >57、方程实数根,有两个不相等的 0122=+++m x m mx )(则实数m 的取值范围是______.041≠->m m 且8、不等式02≤++n mx x 的解集是{}32≤≤-x x |,则m = __,n = __.-1;-69、函数的定义域为22--=x x x f )(______________{2≥x x 或}1-≤x10、对于任意实数x ,一元二次不等式(2m -1)x 2+(m +1)x +(m -4)>0恒成立,则实数m 的取值范围是______. m >511、函数()f x =R ,则a 的取值范围是_________ 【0,8】1)标准化:移项通分化为()()f xg x>(或()()f xg x<);()()f xg x≥(或()()f xg x≤)的形式,2)转化为整式不等式(组)()()0 ()()0()()00()0 ()()f xg xf x f xf xg xg xg x g x≥⎧>⇔>≥⇔⎨≠⎩;1. 不等式22231372x xx x++>-+的解集是 2. 不等式3113xx+>--的解集是3. 不等式2223712x xx x+-≥--的解集是 4. 不等式1111x xx x-+<+-的解集是5. 不等式229152x xx--<+的解集是 6. 不等式2232712x xx x-+>-+的解集是7. 不等式2121x xx+≤+的解集是 8. 不等式2112xx->-+的解集是9. 不等式23234xx-≤-的解集是 10. 不等式2212(1)(1)xx x-<+-的解集是答案1. 2. (-2,3)3. 4.5. 6. 7. 8. (1,2)9. 10.无理不等式一般是指在根号下含有未知数的不等式,今天我们主要研究在二次根号下含有未知数的简单的无理不等式的解法。
放缩法妙解不等式问题【典型例题】例1.已知函数f(x)=1ae x-1+x,其中a∈R且a≠0.(1)设a>0,过点A-1,-12作曲线C:y=f(x)的切线(斜率存在),求切线的斜率;(2)证明:当a=1或0<a≤2e时,f(x)≥12ax(x≥-1).例2.已知函数f(x)=(x2-2x+2)e x-12ax2(a∈R).(1)当a=e时,求函数f(x)的单调区间;(2)证明:当a≤-2时,f(x)≥2.例3.已知函数f(x)=2ln x+sin x+1,函数g(x)=ax-1-b ln x(a,b∈R,ab≠0).(1)讨论g(x)的单调性;(2)证明:当a=b=1时,g(x)≥0.(3)证明:f(x)<(x2+1)e sin x.例4.已知函数f(x)=ae x(a∈R),g(x)=ln xx+1.(1)当a=1e时,求函数y=f(x)在(1,f(1))处的切线方程;(2)当a≥1e时,证明:f(x)-g(x)≥0.例5.已知函数f(x)=e x-ax3.(1)若x∈(0,+∞),f(x)≥0恒成立,求a的取值范围;(2)证明:当a=23时,f(x)>0;(3)证明:当n∈N*时,1e +2e2+3e3+⋯+ne n<3.例6.已知函数f(x)=ae x,g(x)=ln(x-1)+1.(1)设G(x)=f(x)-g(x),x=3是G(x)的极值点,求函数G(x)的单调区间;(2)证明:当a≥1e2时,f(x)≥g(x).例7.已知函数f(x)=e x-1-x-ax2,其中e为自然对数的底数.(1)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;(2)若x>0,证明:(e x-1)ln(x+1)>x2.【同步练习】1.已知函数f(x)=ln(x-a)x.(1)若a≤-1.证明f(x)在(0,+∞)上单调递减;(2)若x>0,证明:e x ln(x+1)>x2+ln(x+1)(其中e=2.71828⋯是自然对数的底数)2.已知函数f(x)=x2+x+e2x ln x,x∈(e,+∞).(1)证明:当x∈(e,+∞)时,ln x>3x-ex+e;(2)若存在x0∈[n,n+1)(n∈N*)使得对任意的x∈(e,+∞)都有f(x)≥f(x0)成立.求n的值.(其中e=2.71828⋯是自然对数的底数).3.已知函数f(x)=x ln x-ae x+a,其中a∈R.(1)若f(x)在定义域内是单调函数,求a的取值范围;(2)当a=1时,求证:对任意x∈(0,+∞),恒有f(x)<cos x成立.4.已知函数f(x)=e-x13x3-2x+2sin x+1,g(x)=sin x+cos x+x2-2x.(1)求g(x)在点(0,g(0))处的切线方程;(2)证明:对任意的实数a≤1,g(x)≥af(x)在[0,+∞)上恒成立.5.已知函数f(x)=e x+cos x-2,f′(x)为f(x)的导数.(1)当x≥0时,求f′(x)的最小值;(2)当x>-π2时,xex+x cos x-ax2-2x≥0恒成立,求a的取值范围.6.已知函数f(x)=ae x-b ln x,曲线y=f(x)在点(1,f(1))处的切线方程为y=1e -1x+1.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>0.7.已知函数f(x)=ae x-b ln xx,在点(1,f(1))处的切线方程为y=(e-1)x+1.(1)求a,b;(2)证明:f(x)>1.8.已知函数f(x)=me x-ln x-1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.-1,a∈R.9.已知函数f(x)=ln x+ax(1)若函数f(x)的最小值为0,求a的值.(2)证明:e x+(ln x-1)sin x>0.。
不等式解法高中在高中数学中,解不等式的方法可以分为以下几种常见的情况:1. 一元一次不等式:对于形如ax + b > c 或ax + b < c 的一元一次不等式,可以通过移项和分析系数的正负来确定解集。
具体步骤如下:-将不等式转化为等式,得到ax + b = c。
-根据系数a的正负,确定不等式的方向(大于或小于)。
-根据不等式方向,判断解集是开区间还是闭区间。
-如果解集是闭区间,根据系数a的正负确定不等式中的等号方向。
-最后将解集写出。
2. 一元二次不等式:对于形如ax^2 + bx + c > 0 或ax^2 + bx + c < 0 的一元二次不等式,可以通过求解对应的二次方程来确定解集。
具体步骤如下:-将不等式转化为等式,得到ax^2 + bx + c = 0。
-求解二次方程,得到其根x1和x2。
-根据系数a的正负和二次方程的性质,确定解集的形式:-若a > 0,解集是开口向上的抛物线在x1和x2之间的区间;-若a < 0,解集是开口向下的抛物线在x1和x2之外的区间。
-最后将解集写出。
3. 绝对值不等式:对于形如|ax + b| > c 或|ax + b| < c 的绝对值不等式,可以通过分情况讨论来确定解集。
具体步骤如下:-将绝对值不等式分为两种情况:ax + b > c 和ax + b < -c,以及-c < ax + b < c。
-对于每种情况,移项得到一元一次不等式。
-对一元一次不等式按照一元一次不等式的解法进行求解。
-根据不同情况的解集,合并得到绝对值不等式的解集。
这些是一些常见的解不等式的方法,但在数学中还存在其他类型的不等式和解法,这里只提供了一些基本的解法作为参考。
在具体的问题中,可以根据不等式的形式和条件选择合适的方法进行求解。
求解不等式的方法在数学学习中,不等式是一个非常重要的概念。
它不仅在数学中有广泛的应用,而且在生活中也有很多实际的应用。
因此,掌握解不等式的方法对于中学生来说是至关重要的。
本文将介绍一些常见的解不等式的方法,帮助学生们更好地理解和掌握这一知识点。
一、一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次不等式。
解一元一次不等式的方法与解方程的方法类似,可以通过移项、合并同类项等步骤来求解。
例如,对于不等式2x + 3 > 7,我们可以先将3移到等式的另一边,得到2x > 7 - 3,即2x > 4。
接着,我们将不等式两边都除以2,得到x > 2。
因此,不等式的解集为{x | x > 2}。
二、一元二次不等式的解法一元二次不等式是指含有一个未知数的二次不等式。
解一元二次不等式的方法相对复杂一些,需要考虑不等式的开口方向以及二次函数的图像。
对于形如ax^2 + bx + c > 0的一元二次不等式,我们可以先求出二次函数的零点,然后根据二次函数的图像来确定不等式的解集。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以先求出二次函数x^2 - 4x + 3 = 0的零点,得到x = 1和x = 3。
然后,我们可以绘制二次函数的图像,根据图像可以确定不等式的解集为{x | 1 < x < 3}。
三、绝对值不等式的解法绝对值不等式是指含有绝对值符号的不等式。
解绝对值不等式的方法比较灵活,可以根据不等式的形式来选择不同的解法。
对于形如|ax + b| > c的绝对值不等式,我们可以分两种情况讨论。
当ax + b > 0时,不等式可以化简为ax + b > c,解得x > (c - b)/a;当ax + b < 0时,不等式可以化简为-(ax + b) > c,解得x < (b - c)/a。
因此,绝对值不等式的解集为{x | x < (b - c)/a 或 x > (c - b)/a}。
解不等式
一、知识要点
一元一次不等式的解法:
一元二次不等式的解法:
绝对值不等式的解法:
指数对数不等式的解法:
抽象函数不等式的解法:
1.若关于x 的不等式x k )1(2+≤4
k +4的解集是M ,则对任意实常数k ,总有( )
(A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M .
2.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:
则不等式ax 2+bx+c>0的解集是_______________________. 3.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )
A .11<<-a
B .20<<a
C .2321<<-a
D .2123<<-a 4.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:
A .0a <
B .0a >
C .1a <-
D .1a >
5.不等式01
21>+-x x 的解集是 . 6.不等式221
x x +
>+的解集是 ( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞-
C .(1,0)(0,1)-
D .(,1)(1,)-∞-+∞
7.若a >0,b >0,则不等式-b <1x
<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a
8.不等式311<+<x 的解集为 ( ) A .()2,0 B .())4,2(0,2 - C .()0,4-
D .())2,0(2,4 --
9.不等式|x +2|≥|x |的解集是 . 10. 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )
(A ))0,(-∞
(B )),0(+∞ (C ))3log ,(a -∞ (D )),3(log +∞a 11.若正整数m 满足m m 102105121<<-,则m = 。
)3010.02(lg ≈
12若011log 22<++a a a ,则a 的取值范围是 ( )
A .),21(+∞
B .),1(+∞
C .)1,2
1( D .)21,0(
13.设)(1x f -是函数)1( )(2
1)(>-=-a a a x f x x 的反函数,则使1)(1>-x f 成立的x 的取值范围为( )
A .),21(2+∞-a a
B . )21,(2a a --∞
C . ),21(2a a a -
D . ),[+∞a
14.设函数⎪⎩⎪⎨⎧≥--<+=1
,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为 A .(][]10,02, -∞- B .(][]1,02, -∞-
C .(][]10,12, -∞-
D .[]10,1]0,2[ -
15.已知⎩⎨⎧≥〈-=,0,1,
0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 . 16.不等式3)61(log 2≤++
x x 的解集为 17.设f (x )= 1232,2,log (1),2,
x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 () (A)(1,2)⋃(3,+∞) (B)(10,+∞)
(C)(1,2)⋃ (10 ,+∞) (D)(1,2)
18.不等式组⎩⎨⎧>-<-1)1(log 2|2|22x x 的解集为 ( )
(A ) (0,3); (B) (3,2); (C) (3,4); (D) (2,4)。
19.设函数11()2x x f x +--=,求使()2f x ≥x 取值范围.
20设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象
如右图,则不等式f(x)<0的解集是 .
21.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,
且f (2)=0,则使得f (x )<0的x 的取值范围是 ( )
(A) (-∞,2); (B) (2,+∞); (C) (-∞,-2)⋃(2,+∞); (D) (-2,2)。
22.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。
(Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;
(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围。
23.已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B ,22+=(,分别是与y x ,轴正半轴同方向的单位向量),函数6)(2
--=x x x g 。
(1)求b k ,的值;
(2)当x 满足)()(x g x f >时,求函数)
(1)(x f x g +的最小值。
24.已知函数b
ax x x f +=2
)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4. (1)求函数f (x )的解析式;
(2)设k>1,解关于x 的不等式;x
k x k x f --+<2)1()( 25.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .
(Ⅰ)求函数g (x )的解析式;
(Ⅱ)解不等式g (x )≥f (x )-|x -1|.
(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围。