【配套K12】高考数学四海八荒易错集专题13立体几何中的向量方法理
- 格式:doc
- 大小:999.46 KB
- 文档页数:23
专题12 立体几何中的向量方法1.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA →,OB →,OC →不构成空间的一个基底,那么点O ,A ,B ,C 一定共面; ③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c 也是空间的一个基底. 其中正确的命题是( ) A .①②B .①③C .②③D .①②③解析 对于①,“如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系一定是共线”,所以①错误,②③正确. 答案 C2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637C.607D.6573.已知点B 是点A (3,7,-4)在xOz 平面上的射影,则OB →2等于( ) A .(9,0,16) B .25 C .5D .13解析 A 在xOz 平面上的射影为B (3,0,- 4),则OB →=(3,0,-4),OB → 2=25. 答案 B4.正方体ABCD A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216 B.66C.156 D.153解析 如图,设AB →=a ,AD →=b ,AA 1→=c , 则a ·b =b ·c =c ·a =0. 由条件知MN →=MA →+AB →+BN →=-13(a +b +c )+a +12c=23a -13b +16c , ∴MN →2=49a 2+19b 2+136c 2=2136,∴|MN →|=216.答案 A5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°6.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ) A.19 B.459C.259D.23解析 设正方体棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立如图所示空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.答案 B7.设正方体ABCD A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233解析 如图,建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0,n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1).∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.答案 D8.二面角αl β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于( )A. 2B. 3 C .2 D. 5解析 如图,∵二面角αl β等于120°, ∴CA →与BD →夹角为60°.由题设知,CA →⊥AB →, AB →⊥BD →,|AB →|=|AC →|=|BD →|=1,|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=3+2×cos 60°=4,∴|CD →|=2. 答案 C9.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.(2)解 由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),C (1,0,0),C 1(0,0,3),B 1(-1,0,3).所以CC 1→=(-1,0,3), 所以CE →=(-λ,0,3λ),∴E (1-λ,0,3λ),则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3).设平面AB 1E 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →,n ⊥AB 1→,得⎩⎨⎧(1-λ)x -y +3λz =0,-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,,∴n =⎝⎛⎭⎪⎫3-3λ2-λ,32-λ,3,∵AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面的一个法向量, ∴|cos 〈n ,BA →〉|=n ·BA →|n |·|BA →|=32-λ1×⎝⎛⎭⎪⎫3-3λ2-λ2+⎝⎛⎭⎪⎫32-λ2+(3)2=32.两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).∴λ=1.10.如图,在多面体ABCDEF中,底面ABCD是边长为2的的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(1)求证:平面BDGH∥平面AEF;(2)求二面角H-BD-C的大小.(1)证明在△CEF中,因为G,H分别是CE,CF的中点.所以GH∥EF,又因为GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,因为ABCD为菱形,所以O为AC中点,在△ACF中,因为OA=OC,CH=HF,所以OH∥AF,又因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.又因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(2)解取EF的中点N,连接ON,因为四边形BDEF是矩形,O,N分别为BD,EF的中点,所以ON∥ED,因为平面BDEF⊥平面ABCD,所以ED ⊥平面ABCD , 所以ON ⊥平面ABCD ,因为ABCD 为菱形,所以AC ⊥BD ,得OB ,OC ,ON 两两垂直. 所以以O 为原点,OB ,OC ,ON 所在直线分别为x 轴,y 轴,z 轴, 如图建立空间直角坐标系.因为底面ABCD 是边长为2的菱形,∠BAD =60°,BF =3,所以B (1,0,0),D (-1,0,0),E (-1,0,3),F (1,0,3),C (0,3,0),H ⎝ ⎛⎭⎪⎫12,32,32,所以BH →=⎝ ⎛⎭⎪⎫-12,32,32,DB →=(2,0,0).设平面BDH 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BH →=0n ·DB →=0⇒⎩⎨⎧-x +3y +3z =0,2x =0,令z =1,得n =(0,-3,1).由ED ⊥平面ABCD ,得平面BCD 的法向量为DE →=(0,0,3), 则cos 〈n ,DE →〉=n ·DE →|n||DE →|=0×0+(-3)×0+1×32×3=12. 所以二面角H -BD -C 的大小为60°.11.如图,△ABC 是以∠ABC 为直角的三角形,SA ⊥平面ABC ,SA =BC =2,AB =4.M ,N ,D 分别是SC ,AB ,BC 的中点.(1)求证:MN ⊥AB ;(2)求二面角S ND A 的余弦值; (3)求点A 到平面SND 的距离.解 以B 为坐标原点,BC ,BA 为x ,y 轴的正方向,垂直于平面ABC 的直线为z 轴,建立空间直角坐标系(如图).(1)证明 由题意得A (0,4,0),B (0,0,0),M (1,2,1),N (0,2,0),S (0,4,2),D (1,0,0). 所以:MN →=(-1,0,-1),AB →=(0,-4,0),MN →·AB →=0,∴MN ⊥AB .(3)∵AN →=(0,-2,0), ∴点A 到平面SND 的距离 d =|AN →·m ||m |=63.12.如图,将长为4,宽为1的长方形折叠成长方体ABCD -A 1B 1C 1D 1的四个侧面,记底面上一边AB =t (0<t <2),连接A 1B ,A 1C ,A 1D .(1)当长方体ABCD -A 1B 1C 1D 1的体积最大时,求二面角B -A 1C -D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由解法一 (1)根据题意,长方体体积为V =t (2-t )×1=t (2-t )≤⎝ ⎛⎭⎪⎫t +2-t 22=1,当且仅当t =2-t ,即t =1时体积V 有最大值为1,所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形, 作BM ⊥A 1C 于M ,连接DM ,BD ,因为四边形ABCD 为正方形,所以△A 1BC 与△A 1DC 全等,故DM ⊥A 1C ,所以∠BMD 即为所求二面角的平面角.(2)若线段A 1C 上存在一点P ,使得A 1C ⊥平面BPD ,则A 1C ⊥BD 又A 1A ⊥平面ABCD ,所以A 1A ⊥BD ,所以BD ⊥平面A 1AC .所以BD ⊥AC ,底面四边形ABCD 为正方形,即只有ABCD 为正方形时,线段A 1C 上存在点P 满足要求,否则不存在.由(1)知,所求点P 即为BM ⊥A 1C 的垂足M ,此时,A 1P =A 1B 2A 1C =23=233.法二 根据题意可知,AA 1,AB ,AD 两两垂直,以AB 为x 轴,AD 为y 轴,AA 1为z 轴建立如图所示的空间直角坐标系:(1)长方体体积为V =t (2-t )×1=t (2-t )≤⎝ ⎛⎭⎪⎫t +2-t 22=1,当且仅当t =2-t ,即t =1时体积V 有最大值为1.所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形,则A 1(0,0,1),B (1,0,0),C (1,1,0),A 1B →=(1,0,-1),BC →=(0,1,0),设平面A 1BC 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧x -z =0,y =0,取x =z =1,得:m =(1,0,1),同理可得平面A 1CD 的法向量n =(0,1,1), 所以,cos 〈m ,n 〉=m·n |m|·|n|=12,又二面角B -A 1C -D 为钝角,故值是120°.(也可以通过证明B 1A ⊥平面A 1BC 写出平面A 1BC 的法向量)(2)根据题意有B (t ,0,0),C (t ,2-t ,0),D (0,2-t ,0),若线段A 1C 上存在一点P 满足要求,不妨A 1P →=λA 1C →(λ>0),可得P (λt ,λ(2-t ),1-λ) BP →=(λt -t ,λ(2-t ),1-λ), BD →=(-t ,2-t ,0),⎩⎪⎨⎪⎧BP →·A 1C →=0,BD →·A 1C →=0,即: ⎩⎪⎨⎪⎧t (λt -t )+λ(2-t )2-(1-λ)=0,-t 2+(2-t )2=0,解得:t =1,λ=23.即只有当底面四边形是正方形时才有符合要求的点P ,位置是线段A 1C 上A 1P ∶PC =2∶1处.13.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值.解 (1)证明:因为AD ⊥侧面PAB ,PE ⊂平面PAB ,所以AD ⊥PE . 又因为△PAB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD . 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为原点,建立如图所示的空间直角坐标系E -xyz .则E (0,0,0),C (1,-1,0),D (2,1,0),P (0,0,3). ED →=(2,1,0),EP →=(0,0,3),PC →=(1,-1,-3).设n =(x ,y ,z )为平面PDE 的法向量. 由⎩⎪⎨⎪⎧n ·ED →=0,n ·EP →=0,即⎩⎨⎧2x +y =0,3z =0,令x =1,可得n =(1,-2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|PC →·n ||PC →||n |=35. 所以PC 与平面PDE 所成角的正弦值为35. 14.如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.(1)试确定点F 的位置,使得EF ∥平面PDC ;(2)若BF =13BP ,求直线AF 与平面PBC 所成的角的正弦值.(2)以DC 为x 轴,过D 点作DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系.在△PDC 中,由PD =4,PC =27,∠CDP =120°,及余弦定理,得CD =2,则D (0,0,0),C (2,0,0),B (2,0,3),P (-2,23,0),A (0,0,3),设F (x ,y ,z ),则BE →=(x -2,y ,z -3)=13BP →=⎝ ⎛⎭⎪⎫-43,233,-1, ∴F ⎝ ⎛⎭⎪⎫23,233,2.AF →=⎝ ⎛⎭⎪⎫23,233,-1.设平面PBC 的法向量n 1=(a ,b ,c ),CB →=(0,0,3),PC →=(4,-23,0),由⎩⎪⎨⎪⎧ n 1·CB →=0,n 1·PC →=0,得⎩⎨⎧ 3z =0,4x -23y =0,令y =1,可得n 1=⎝ ⎛⎭⎪⎫32,1,0. cos 〈AF →,n 1〉=AF →·n 1|AF →||n 1|=62135, ∴直线AF 与平面PBC 所成的角的正弦值为62135. 15.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,∠ABC =∠BAD =90°,AP =AD =AB =2,BC =t ,∠PAB =∠PAD =α.(1)当t =32时,试在棱PA 上确定一点E ,使得PC ∥平面BDE ,并求出此时AE EP的值;(2)当α=60°时,若平面PAB ⊥平面PCD ,求此时棱BC 的长.解 (1)连接AC 、BD 交于点F ,在平面PCA 中作EF ∥PC 交PA 于E ,连接DE ,BE .因为PC ⊄平面BDE ,EF ⊂平面BDE ,所以PC ∥平面BDE . 因为AD ∥BC ,所以AF FC =AD BC =13, 因为EF ∥PC ,所以AE EP =AF FC =13.以O 为坐标原点,分别以OG →,OB →,OP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz . 则O (0,0,0),P (0,0,1),A (-1,0,0),B (0,1,0),D (0,-1,0),G (1,0,0),C ⎝ ⎛⎭⎪⎫22t ,1-22t ,0,故PA →=(-1,0,-1),PB →=(0,1,-1), PC →=⎝ ⎛⎭⎪⎫22t ,1-22t ,-1,PD →=(0,-1,-1).设平面PAB 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·PA →=0,m ·PB →=0,即⎩⎪⎨⎪⎧ -x 1-z 1=0,y 1-z 1=0,不妨令x 1=-1,可得m =(-1,1,1)为平面PAB 的一个法向量.设平面PCD 的法向量为n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n ·PC →=0,n ·PD →=0,即⎩⎪⎨⎪⎧22tx 2+⎝ ⎛⎭⎪⎫1-22t y 2-z 2=0,-y 2-z 2=0,不妨令y 2=1,可得n =⎝ ⎛⎭⎪⎫1-22t ,1,-1为平面PCD 的一个法向量.由m ·n =0,解得t =22,即棱BC 的长为2 2.。
立体几何中的向量方法【重点梳理】1.平面的法向量定义:已知平面,直线 l,取l的方向向量a ,有a,则称为a为平面的法向量。
重点解说:一个平面的法向量不是独一的,在应用时,可适合取平面的一个法向量。
已知一平面内两条订交直线的方向向量,可求出该平面的一个法向量。
2.平面的法向量确立往常有两种方法:(1)几何体中有详细的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量;(2)几何体中没有详细的直线,一般要成立空间直角坐标系,而后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为 n=( x, y, z);( ii )找出(求出)平面内的两个不共线的向量的坐标a=( a1, b1, c1), b=(a2,b2, c2);( iii)依据法向量的定义成立对于n a0 x、 y、z 的方程;n b0(iv )解方程组,取此中的一个解,即得法向量.因为一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.运用:(1)线面平行线面平行的判断方法一般有三种:①设直线 l 的方向向量是 a ,平面的向量是u,则要证明l //,只需证明 a u ,即 a u0 。
(2)面面平行①由面面平行的判断定理,要证明面面平行,只需转变为相应的线面平行、线线平行即可。
②若能求出平面,的法向量u,v,则要证明//,只需证明u // v 。
( 3)线面垂直①设直线 l 的方向向量是 a ,平面的向量是u,则要证明l,只需证明 a // u 。
②依据线面垂直的判断定理转变为直线与平面内的两条订交直线垂直。
(4)面面垂直①依据面面垂直的判断定理转变为证相应的线面垂直、线线垂直。
②证明两个平面的法向量相互垂直。
设直线 l的方向向量为 a ,平面的法向量为 u ,直线与平面所成的角为, a 与 u 的角为,则有 sin| cos || a u | 。
| a | | u |( 6)求二面角如图,若 PA于A,PB于B,平面PAB交l于E,则∠ AEB为二面角l的平面角,∠ AEB+∠APB=180°。
第五节立体几何中的向量方法向量法证明平行、垂直关系考向聚焦高考常考内容,主要以向量为工具,通过直线的方向向量、平面的法向量证明线线、线面、面面平行与垂直,常以解答题形式出现,难度中档,所占分值6分左右1.(2011年辽宁卷,理18)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC ⊥平面DCQ.(2)求二面角Q BP C 的余弦值.解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D xyz.(1)证明:依题意有Q(1,1,0),C(0,0,1),P(0,2,0)则=(1,1,0),=(0,0,1),=(1,-1,0).所以·=0,·=0.即PQ⊥DQ,PQ⊥DC.且DQ∩DC=D.故PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解:依题意有B(1,0,1),=(1,0,0),=(-1,2,-1).设n=(x,y,z)是平面PBC的法向量,则即因此可取n=(0,-1,-2).设m是平面PBQ的法向量,则可取m=(1,1,1),所以cos<m,n>=-.故二面角Q BP C的余弦值为-.2.(2011年北京卷,理16)如图,在四棱锥P ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.(1)证明:∵PA⊥平面ABCD,∴PA⊥BD,∵底面ABCD为菱形,∴AC⊥BD,∵PA∩AC=A,∴BD⊥平面PAC.解:(2)设AC∩BD=O,∵∠BAD=60°,PA=AB=2,∴BO=1,AO=OC=,如图,以O为坐标原点,OB、OC所在直线为x,y轴,建立空间直角坐标系O xyz,则P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0),∴=(1,,-2),=(0,2,0),设PB与AC所成的角为θ,则cos θ=|cos<,>|=||=.(3)由(2)知,=(-1,,0),设|PA|=t>0,则P(0,-,t),∴=(-1,-,t),设平面PBC的法向量为m=(x,y,z),则即,令y=,则x=3,z=,∴m=(3,,),同理可得平面PDC的法向量n=(-3,,), ∵平面PBC⊥平面PDC,∴m·n=0,即-6+=0,∴t=,即PA=.求直线与平面所成的角考向聚焦高考热点内容,主要以向量为工具,考查通过求直线的方向向量和平面的法向量的夹角,进而转化为直线与平面所成的角,主要以解答题形式出现,难度中档,所占分值6分左右备考指津解决这类问题的关键是建立适当的坐标系,准确的求出直线的方向向量和平面的法向量,计算要准确3.(2012年湖北卷,理19,12分)如图(1),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图(2)所示).(1)当BD的长为多少时,三棱锥A BCD的体积最大;(2)当三棱锥A BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.(1)解:法一:在如题图(1)所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后(如题图(2)),AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD=BD·CD=x(3-x).于是=AD·S △BCD=(3-x)·x(3-x)=·2x(3-x)(3-x)≤[]3=,当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A BCD的体积最大.法二:同法一,得=AD·S△BCD=(3-x)·x(3-x)=(x3-6x2+9x).令f(x)=(x3-6x2+9x),由f'(x)=(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f'(x)>0;当x∈(1,3)时,f'(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A BCD的体积最大.(2)解:法一:以D为原点,建立如图a所示的空间直角坐标系D xyz.由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(,1,0),且=(-1,1,1). 设N(0,λ,0),则=(-,λ-1,0).因为EN⊥BM等价于·=0,即(-,λ-1,0)·(-1,1,1)=+λ-1=0,故λ=,N(0,,0).所以当DN=(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由及=(-1,,0),得可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由=(-,-,0),n=(1,2,-1),可得sin θ=cos(90°-θ)===,即θ=60°.故EN与平面BMN所成角的大小为60°.法二:由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,如图b,取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图c,延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF.因为MF⊥平面BCD.又EN⊂面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=(即N是CD的靠近点D的一个四等分点),EN⊥BM.连接MN,ME,由计算得NB=NM=EB=EM=,所以△NMB与△EMB是两个共底边的全等的等腰三角形,如图d所示,取BM的中点G,连接EG,NG,则BM⊥平面EGN.在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN,故∠ENH是EN与平面BMN所成的角, 在△EGN中,易得EG=GN=NE=,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.4.(2010年辽宁卷,理19)已知三棱锥P ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(1)证明:CM⊥SN;(2)求SN与平面CMN所成角的大小.设PA=1,以A为原点,AB,AC,AP所在直线分别为x,y,z轴建立空间直角坐标系如图. 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(1)证明:=(1,-1,),=(-,-,0),因为·=-++0=0,所以CM⊥SN.(2)解:=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,由得令x=2,得a=(2,1,-2).设SN与平面CMN所成的角为θ,则sin θ=|cos<a,>|.又|cos<a,>|=||=,∴sin θ=,又θ∈[0°,90°],∴θ=45°,故SN与平面CMN所成角为45°.5.(2010年全国新课标卷,理18)如图,已知四棱锥P ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.(1)证明:以H为原点,HA,HB,HP分别为x,y,z轴.线段HA的长为单位长度,建立空间直角坐标系如图.则A(1,0,0),B(0,1,0).设C(m,0,0),P(0,0,n)(m<0,n>0).则D(0,m,0),E(,,0),可得=(,,-n),=(m,-1,0).因为·=-+0=0.所以PE⊥BC.(2)解:由已知条件可得m=-,n=1,故C(-,0,0).D(0,-,0),E(,-,0),P(0,0,1).设n=(x,y,z)为平面PEH的法向量.则即因此可以取n=(1,,0).又=(1,0,-1),可得|cos<,n>|=,所以直线PA与平面PEH 所成角的正弦值为.求二面角考向聚焦高考重点考查内容,主要以向量为工具,考查通过求两平面的法向量及其角,进而转化为二面角的大小,考查空间向量的线性运算及学生的空间想象能力,难度中档偏上,所占分值8分左右6.(2012年重庆卷,理19,12分)如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1)求点C到平面A1ABB1的距离;(2)若AB1⊥A1C,求二面角A1CD C1的平面角的余弦值.解:(1)∵AC=BC,DA=DB,∴CD⊥AB,又∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,∵AA1∩AB=A,AA1⊂平面ABB1A1,AB⊂平面ABB1A1∴CD⊥平面ABB1A1,∴点C到平面ABB1A1的距离为CD===.(2)如图,过点D作DD1∥AA1交A1B1于D1,由(1)知DB、DC、DD1两两垂直,以D为原点,射线DB、DC、DD1分别为x 轴、y轴、z轴的正半轴建立空间坐标系D xyz.设直棱柱的侧棱AA1=a,则A(-2,0,0),A1(-2,0,a),B1(2,0,a),C1(0,,a),C(0,,0),∴=(2,,-a),=(4,0,a),∵AB1⊥A1C,∴·=0,∴8-a2=0,∴a=2,∴=(0,,0),=(-2,0,2),=(0,0,2),设平面A1CD的法向量n1=(x1,y1,z1),则,∴,令z1=1,则n1=(,0,1),因AB⊥平面C1CD,故可取面C1CD的法向量n2=(1,0,0),∴cos<n1,n2>===.所以二面角A1CD C1的平面角的余弦值为.本题考查了立体几何中点到平面的距离和二面角大小的求法,空间向量的运用,主要考查学生的空间想象力、推理论证能力、化归能力和运算求解能力,难度适中.7.(2012年江西卷,理19,12分)在三棱柱ABC A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,因为A1O⊥平面ABC,所以A1O⊥BC.由AB=AC,OB=OC,得AO⊥BC,而A1O∩AO=O,所以BC⊥平面AA1O,所以BC⊥OE,而BB1∩BC=B,所以OE⊥平面BB1C1C,又AO==1,AA1=,得AE==.(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),由=得点E的坐标是(,0,),由(1)得平面BB1C1C的一个法向量是=(,0,),设平面A1B1C的法向量为n=(x,y,z),由,得,令y=1,得x=2,z=-1,即n=(2,1,-1),所以cos<,n>==,即平面BB1C1C与平面A1B1C夹角的余弦值是.8.(2012年安徽卷,理18,12分)平面图形ABB1A1C1C如图(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图(2)所示的空间图形,对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A BC A1的余弦值.解:本题考查空间中的垂直关系,求线段长,考查求二面角的余弦值,考查空间向量在求解立体几何问题中的应用.考查空间想象能力,推理论证能力,计算求解能力等.(1)如图,过点A作AO⊥平面A1B1C1,垂足为O,连接OB1,OC1,OA1,∵△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,BB1C1C是矩形,∴ABC A1B1C1为直三棱柱,由BC=2,AB=AC=知∠BAC为直角,且OB1=OC1,∵A1B1=A1C1=,∴OA1⊥B1C1,∵AO⊥平面A1B1C1,∴OA⊥B1C1,∴B1C1⊥平面OAA1,∵AA1⊂平面OAA1,所以AA1⊥BC.(2)由(1)可知OA=BB1=4,OA1=+=3,由OA⊥OA1,∴AA1==5.(3)由(1)知∠BAC=90°,则∠B1OC1=90°,且OA1在角∠B1OC1的平分线上.以O为坐标原点,OB1,OC1,OA所在的直线分别为x轴,y轴,z轴,建立空间直角坐标系.A(0,0,4),B(,0,4),C(0,,4),A1(,,0),则=(-,,0),=(,,-4).设平面BCA1的法向量为n=(x,y,z),则,即,取x=1,则n=(1,1,).由平面ABC的一个法向量为=(0,0,4),∴cos<n,>===,由图形可知二面角为钝角,所以二面角A BC A1的余弦值为-.解决本题的关键是能正确理解由平面几何图形到空间几何体的转换,其中的平行和垂直关系,线段长度关系等,然后通过添加辅助线构造常见几何体,就容易找出所需要的平行和垂直关系,也容易得出特殊的图形,也容易建立空间直角坐标系来求解.9.(2012年山东卷,理18,12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F BD C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠DCB=120°,∵CD=CB,∴∠CBD=∠CDB=30°,∴∠ABD=30°,∴∠ADB=90°,即AD⊥DB,又∵DB⊥AE,AE∩AD=A,∴BD⊥平面AED.(2)解:取BD中点P,连结CP,FP.∵CD=CB,∴CP⊥BD.又∵FC⊥平面ABCD,∴BD⊥FC,∴BD⊥平面FCP,∴BD⊥FP,∴∠FPC是二面角F BD C的平面角.设CD=1,则CP=,∴在Rt△FCP中,FP==,∴cos∠FPC==,即二面角F BD C的余弦值为.10.(2012年新课标全国卷,理19,12分)如图,直三棱柱ABC A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1BD C1的大小.(1)证明:不妨设AC=BC=AA1=1.又∵D为AA1中点,∴DC1=,BC1=,∴BD2=3=AD2+AB2,∴AB2=2=AC2+BC2,∴∠ACB=90°,即BC⊥AC,又∵BC⊥CC1,∴BC⊥平面ACC1A1,又∵DC1⊂平面ACC1A1,∴DC1⊥BC.(2)解:由(1)知CA、CB、CC1两两垂直.分别以CA、CB、CC1为x、y、z轴建立空间直角坐标系,则B(0,1,0),D(1,0,1),A1(1,0,2),C1(0,0,2),∴=(1,-1,1),=(0,-1,2),设平面BDC1的一个法向量n=(x,y,z).则即令z=1,则y=2,x=1,即n=(1,2,1).可取平面A1BD的一个法向量m=(1,1,0),∴cos<m,n>===,又∵二面角A1BD C1为锐二面角,∴该二面角的大小为.该题应属立体几何的常规考查形式,一证一求,难度适中.11.(2012年广东卷,理18,13分)如图所示,在四棱锥P ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B PC A的正切值.解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,同理PC⊥BD.∵PA、PC是平面PAC中的两条相交直线,∴BD⊥平面PAC.(2)解:法一:设AC、BD的交点为O,连接OE,则∠BEO即为所求二面角B PC A的平面角,由(1)知BD⊥平面PAC,∴BD⊥AC,又∵四边形ABCD为矩形.∴四边形ABCD是正方形,∴AB=AD=2,AC=BD=2,∴BO=OC=BD=×2=,PC===3,由Rt△PAC∽Rt△OEC知=,=,OE=,在Rt△BOE中,tan ∠BEO===3.即二面角B PC A的正切值为3.法二:如图,分别以AB、AD、AP所在直线为x、y、z轴,A为坐标原点,建立空间直角坐标系, 由(1)知BD⊥平面PAC,∴BD⊥AC,∴矩形ABCD为正方形,∴P(0,0,1),B(2,0,0),D(0,2,0),C(2,2,0),=(-2,2,0)是平面PAC的一个法向量,设n=(x,y,z)是平面PBC的法向量,由得,令x=1,则z=2,y=0,∴n=(1,0,2),∴cos<n,>===-,sin <n,>==,∴tan <n,>==-=-3又二面角B PC A为锐角,∴二面角B PC A的正切值为3.12.(2012年浙江卷,理20,15分)如图,在四棱锥P ABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A MN Q的平面角的余弦值.(1)证明:因为M,N分别是PB,PD的中点,所以MN是△PBD的中位线,所以MN∥BD.又因为MN⊄平面ABCD,所以MN∥平面ABCD.(2)解:法一:连结AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系Oxyz,如图所示.在菱形ABCD中,∠BAD=120°,得AC=AB=2,BD=AB=6.又因为PA⊥平面ABCD,所以PA⊥AC.在Rt△PAC中,AC=2,PA=2,AQ⊥PC,得QC=2,PQ=4.由此知各点坐标如下:A(-,0,0),B(0,-3,0)C(,0,0),D(0,3,0),P(-,0,2),M(-,-,),N(-,,),Q(,0,).设m=(x1,y1,z1)为平面AMN的法向量.由=(,-,),=(,,)取z1=-1,得m=(2,0,-1).设n=(x2,y2,z2)为平面QMN的法向量.由=(-,-,),=(-,,)知取z2=5,得n=(2,0,5).于是cos<m,n>==.所以二面角A MN Q的平面角的余弦值为.法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA,BD=AB.又因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AC,PA⊥AD.所以PB=PC=PD.所以△PBC≌△PDC.因M,N分别是PB,PD的中点,所以MQ=NQ,且AM=PB=PD=AN.取线段MN的中点E,连结AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A MN Q的平面角.由AB=2,PA=2,故在△AMN中,AM=AN=3,MN=BD=3,得AE=.在Rt△PAC中,AQ⊥PC,得AQ=2,QC=2,PQ=4.在△PBC中,cos∠BPC==,得MQ==.在等腰△MQN中,MQ=NQ=,MN=3,得QE==.在△AEQ中,AE=,QE=,AQ=2,得cos∠AEQ==.所以二面角A MN Q的平面角的余弦值为.13.(2012年天津卷,理17,13分)如图,在四棱锥P ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A PC D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,射线AD、AC、AP分别为x轴、y轴、z轴的正半轴建系, 则A(0,0,0),D(2,0,0),B(-,,0),C(0,1,0),P(0,0,2),(1)∵=(0,1,-2),=(2,0,0),∴·=0,∴PC⊥AD.(2)=(0,1,-2),=(2,-1,0),设平面PCD的法向量为n1=(x,y,z),则,即,令x=1,则n1=(1,2,1).又平面PAC的一个法向量可取n2=(1,0,0),∴cos<n1,n2>===.∴sin<n1,n2>=.∴二面角A PC D的正弦值为.(3)设点E(0,0,a),a∈[0,2],则=(,-,a),又=(2,-1,0),故cos<,>===,∴=cos 30°=,∴a=,∴AE=.本小题主要考查了空间两直线的位置关系,二面角,异面直线所成的角等基础知识,主要考查学生的空间想象力,化归能力和运算能力,难度适中.14.(2012年四川卷,理19,12分)如图,在三棱锥P ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(1)求直线PC与平面ABC所成的角的大小;(2)求二面角B AP C的大小.解:法一:(1)设AB的中点为D,AD的中点为O,连结PO、CO、CD.由已知,△PAD为等边三角形.所以PO⊥AD.又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以∠OCP为直线PC与平面ABC所成的角.不妨设AB=4,则PD=2,CD=2,OD=1,PO=.在Rt△OCD中,CO==.所以,在Rt△POC中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan .(2)过D作DE⊥AP于E,连结CE.由已知可得,CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角B AP C的平面角.由(1)知,DE=.在Rt△CDE中,tan∠CED===2.故二面角B AP C的大小为arctan 2.法二:(1)设AB的中点为D,作PO⊥AB于点O,连结CD.因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以PO⊥CD.由AB=BC=CA,知CD⊥AB.设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.如图,以O为坐标原点,OB、OE、OP所在直线分别为x、y、z轴建立空间直角坐标系O xyz. 不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=,CD=2.所以O(0,0,0),A(-1,0,0),C(1,2,0),P(0,0,).所以=(-1,-2,),而=(0,0,)为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,则sin α=||=||=.故直线PC与平面ABC所成的角的大小为arcsin .(2)由(1)有,=(1,0,),=(2,2,0).设平面APC的一个法向量为n=(x1,y1,z1),则⇔⇔从而取x1=-,则y1=1,z1=1,所以n=(-,1,1).设二面角B AP C的平面角为β,易知β为锐角.而平面ABP的一个法向量为m=(0,1,0),则cos β=||=||=.故二面角B AP C的大小为arccos .15.(2011年天津卷,理17)如图,在三棱柱ABC A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A A1C1B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.解:如图所示,建立空间直角坐标系,点H为原点,依题意得A(2,0,0),B1(-2,0,0),A1(0,2,0),B(0,-2,0),C1(0,0,),C(2,-2,).(1)∵=(0,-2,),=(-2,-2,0),∴cos<,>===,∴异面直线AC与A1B1所成角的余弦值为.(2)设平面AA1C1的法向量m=(x,y,z),则,即,取x=,可得m=(,,2),同理设平面A1B1C1的法向量n=(x',y',z'), 则,即,取x'=,可得n=(,-,-2).∴cos<m,n>==-=-,从而sin<m,n>=.所以二面角A A1C1B1的正弦值为.(3)B1C1的中点N(-1,0,),设M(a,b,0),则=(-1-a,-b,),由⊥平面A1B1C1,得,即,∴,∴M(,-,0),∴=(,,0),∴||==.∴线段BM的长为.16.(2011年新课标全国卷,理18)如图,四棱锥P ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A PB C的余弦值.(1)证明:∵∠DAB=60°,AB=2AD,不妨设AD=1.由余弦定理得BD=,∴BD2+AD2=AB2,∴BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD,∵AD∩PD=D,∴BD⊥平面PAD.∴PA⊥BD.(2)解:如图,以D为坐标原点,DA,DB,DP分别为x,y,z轴,建立空间直角坐标系D xyz.设AD=1,则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1),=(-1,,0),=(0,,-1),=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则,即.设z=,则得n=(,1,).同理设平面PBC的法向量为m,则可取m=(0,-1,-),cos<m,n>===-.故二面角A PB C的余弦值为-.17.(2010年浙江卷,理20)如图, 在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A'EF,使平面A'EF⊥平面BEF.(1)求二面角A'FD C的余弦值;(2)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A'重合,求线段FM的长.解:法一:(1)取线段EF的中点H,连接A'H.因为A'E=A'F及H是EF的中点,所以A'H⊥EF.又因为平面A'EF⊥平面BEF,及A'H⊂平面A'EF,所以A'H⊥平面BEF.如图建立空间直角坐标系A xyz,则A'(2,2,2),C(10,8,0),F(4,0,0),D(10,0,0),故=(-2,2,2),=(6,0,0).设n=(x,y,z)为平面A'FD的一个法向量,所以取z=,则n=(0,-2,).又平面BEF的一个法向量m=(0,0,1).故cos<n,m>==.所以二面角A'FD C的余弦值为.(2)设FM=x,则M(4+x,0,0),因为翻折后C与A'重合,所以CM=A'M,故(6-x)2+82+02=(-2-x)2+22+(2)2,得x=,经检验,此时点N在线段BC上,所以FM=.法二:(1)取线段EF的中点H,AF的中点G,连接A'G,A'H,GH.因为A'E=A'F及H是EF的中点,所以A'H⊥EF,又因为平面A'EF⊥平面BEF,A'H⊂平面A'EF,所以A'H⊥平面BEF,又AF⊂平面BEF,故A'H⊥AF,又因为G,H分别是AF,EF的中点,易知GH∥AB,所以GH⊥AF,又∵GH∩A'H=H,∴AF⊥平面A'GH,所以∠A'GH为二面角A'FD C的平面角,在Rt△A'GH中,A'H=2,GH=2,A'G=2,所以cos∠A'GH=.故二面角A'FD C 的余弦值为.(2)设FM=x,因为翻折后C与A'重合, 所以CM=A'M,而CM2=DC2+DM2=82+(6-x)2,A'M2=A'H2+MH2=A'H2+MG2+GH2=(2)2+(x+2)2+22,得x=,经检验,此时点N在线段BC上,所以FM=.立体几何的开放性问题考向聚焦高考常考内容,主要考查立体几何的开放性问题:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型.考查学生分析问题、解决问题的能力,多在解答题的最后一问,难度中档偏上,所占分值4~8分18.(2012年上海数学,理14,4分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.解析:过点A作AE⊥BC于E,连结DE,则DE⊥BC,所以四面体ABCD的体积为S△ADE.由对称性知,点E为BC的中点,且AB=BD=a时,△ADE的面积最大,又AB+BD>AD,即a>c.所以S△ADE=c,因此四面体ABCD的体积的最大值为.答案:19.(2012年北京卷,理16,14分)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE ∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.解:(1)在图(1)中,DE∥BC,AC⊥BC,∴DE⊥AD,DE⊥DC.∴折起后在图(2)中,DE⊥A1D,DE⊥DC.又∵A1D∩DC=D,且A1D,DC⊂平面A1CD,∴DE⊥平面A1CD.∴DE⊥A1C.又∵CD⊥A1C,且CD∩DE=D,且CD,DE⊂平面BCDE,∴A1C⊥平面BCDE.(2)在图(1)中,∵DE∥BC,AC=6,DE=2,BC=3,∴AD=4,DC=2,∴折起后在图(2)中,A1D=4,DC=2,又∵A1C⊥CD,∴A1C=2.由(1)知,建立如图所示的空间直角坐标系C xyz,则C(0,0,0),A1(0,0,2),D(0,2,0),B(3,0,0),E(2,2,0),∴中点M(0,1,),∴=(0,1,).又∵=(-1,2,0),=(3,0,-2).设平面A1BE的法向量为n=(x1,y1,z1),则,∴不妨取x1=1,则n=(1,,).设直线CM与平面A1BE所成角为α,则sin α=|cos(-α)|===,∴α=,∴直线CM与平面A1BE所成角为.(3)不存在点P,使平面A1DP与平面A1BE垂直.证明:假设存在点P,使平面A1DP与平面A1BE垂直.记P的坐标为P(m,0,0),且0≤m≤3.∴=(m,0,-2),=(0,2,-2),设平面A1PD的法向量为m,且m=(x2,y2,z2),∴∴令z2=1,得m=(,,1).又当平面A1DP⊥平面A1BE时,m·n=0,∴++=0,∴m=-2∉[0,3].∴假设不成立,∴不存在点P,使平面A1DP与平面A1BE垂直.本题考查了空间向量在立体几何中的应用,尤其第三问中更好地体现了空间向量的优越性.20.(2012年福建卷,理18,13分)如图,在长方体ABCD A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A B1E A1的大小为30°,求AB的长.解:(1)以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1),故=(0,1,1),=(-,1,-1),=(a,0,1),=(,1,0).∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0)(0≤z0≤1),使得DP∥平面B1AE.此时=(0,-1,z0).设平面B1AE的法向量n=(x,y,z),∵n⊥平面B1AE,∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=(1,-,-a).要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.即AP=.(3)连接A1D,B1C,由长方体ABCD A1B1C1D1及AA1=AD=1,得AD1⊥A1D.∵B1C∥A1D,∴AD1⊥B1C.又由(1)知B1E⊥AD1,且B1C∩B1E=B1,∴AD1⊥平面DCB1A1,∴是平面A1B1E的一个法向量,此时=(0,1,1).设与n所成的角为θ,则cos θ==.∵二面角A B1E A1的大小为30°,∴|cos θ|=cos 30°,即=,解得a=2,即AB的长为2.利用空间向量解决立体几何中的判定与求解问题的关键是合理建系,准确设点,本题第3问较为创新,更能体现向量法的优点,而在法向量的应用上,要注意赋值的有效性.21.(2010年湖南卷,理18)如图所示,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.(1)求直线BE与平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:法一:设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系A xyz.(1)依题意,得B(1,0,0),E(0,1,),A(0,0,0),D(0,1,0),所以=(-1,1,),=(0,1,0).在正方体ABCD A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE与平面ABB1A1所成的角为θ,则sin θ===.即直线BE与平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=(-1,1,).设n=(x,y,z)是平面A1BE的一个法向量,则由n·=0,n·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).设F是棱C1D1上的点,则F(t,1,1)(0≤t≤1).又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.法二:(1)如图(1)所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD A1B1C1D1中,AD⊥平面ABB1A1,所以EM⊥平面ABB1A1,从而BM为BE在平面ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE==3.于是,在Rt△BEM中,sin∠EBM==,即直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:事实上,如图(2)所示,分别取C1D1和CD的中点F、G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别是D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG.而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(2011年福建卷,理20)如图,四棱锥P ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(1)求证:平面PAB⊥平面PAD;(2)设AB=AP.①若直线PB与平面PCD所成的角为30°,求线段AB的长;②在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.解:(1)因为PA⊥平面ABCD,AB⊂平面ABCD,所以PA⊥AB.1分又AB⊥AD,PA∩AD=A,所以AB⊥平面PAD.2分又AB⊂平面PAB,所以平面PAB⊥平面PAD.3分第(1)问赋分细则:(1)证出PA⊥AB得1分,未写出AB⊂平面ABCD不得分;(2)证出AB⊥平面PAD得1分,未写出PA∩AD=A不得分;(3)写出平面PAB⊥平面PAD得1分.(2)以A为坐标原点,建立空间直角坐标系A xyz(如图).在平面ABCD内,作CE∥AB交AD于点E,则CE⊥AD.4分在Rt△CDE中,DE=CD·cos 45°=1,CE=CD·sin 45°=1.设AB=AP=t,则B(t,0,0),P(0,0,t).由AB+AD=4得AD=4-t,所以E(0,3-t,0),C(1,3-t,0),D(0,4-t,0),=(-1,1,0),=(0,4-t,-t).5分①设平面PCD的法向量为n=(x,y,z),由n⊥,n⊥,得取x=t,得平面PCD的一个法向量n=(t,t,4-t).又=(t,0,-t),故由直线PB与平面PCD所成的角为30°得cos 60°=||,即=,解得t=或t=4(舍去,因为AD=4-t>0),6分所以AB=.7分②假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等.8分设G(0,m,0)(其中0≤m≤4-t),则=(1,3-t-m,0),=(0,4-t-m,0),=(0,-m,t).由||=||得12+(3-t-m)2=(4-t-m)2,即t=3-m;(ⅰ)由||=||得(4-t-m)2=m2+t2.(ⅱ)由(ⅰ)、(ⅱ)消去t,化简得m2-3m+4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.11分从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.12分第(2)问赋分细则:(1)建立坐标系得1分,未说明如何建立坐标系扣1分;(2)用t表示出、得1分;(3)设出平面法向量,计算正确得1分;(4)在线段AD上设出G点得1分;(5)计算错误扣2分,如t值计算错;(6)没有结论扣1分.通过高考阅卷分析,造成失分原因如下:(1)解题过程不全,错过得分点,如不建立坐标系;(2)计算错误,如t值求错,平面法向量求错;(3)对参数没有限制范围,如0≤m≤4-t;(4)没有写出结论或未写清结论导致扣分,如不写在线段AD上不存在一个点G,使得点G到P、B、C、D的距离相等.。
专题8.7 立体几何中的向量方法(知识点讲解)【知识框架】【核心素养】以几何体为载体,考查空间线面的平行、垂直关系,考查空间角的函数值的计算,凸显直观想象、数学运算、逻辑推理的核心素养.【知识点展示】(一)异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角.②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a ba b θϕ⋅==⋅.(二)直线与平面所成角直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.范围 [0,]2π.(三) 二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).(3)二面角的范围是[0,π]. (四)利用向量求空间距离点面距的求法:如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【常考题型剖析】题型一: 求异面直线所成的角例1.(2018·全国高考真题(理))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =线1AD 与1DB 所成角的余弦值为( )A .15B .56C 5D .22【答案】C【解析】以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,13),3)D A B D ,所以11(1,0,3),(1,13)AD DB =-=,因为11111115cos ,525AD DB AD DB AD DB ⋅-===⨯,所以异面直线1AD 与1DB 5,选C.例2.(2023·全国·高三专题练习(理))已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C 21D 421【答案】B 【解析】 【分析】利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可. 【详解】设该正面体的棱长为1,因为M 为BC 中点,N 为AD 中点, 所以22131(1)2BN DM ==-⨯因为M 为BC 中点,N 为AD 中点, 所以有12BN BA AN AB AD =+=-+, 1111(),2222DM DB BM DA AB BC AD AB AC AB AD AB AC =+=++=-++-=-++2222111()()222111112224411111111111111111112222242421,2BN DMAB AD AD AB AC AB AD AB AB AC AD AB AD AC AD⋅=-+-++=⋅--⋅-+⋅+⋅=⨯⨯-⨯-⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=- 122cos ,333BN DM BN DM BN DM-⋅〈〉===-⋅⨯,根据异面直线所成角的定义可知直线BN 与直线DM 所成角的余弦值为23, 故选:B例3.(2022·贵州毕节·三模(理))在正四棱锥S ABCD -中,底面边长为22侧棱长为4,点P 是底面ABCD 内一动点,且13SP =A ,P 两点间距离最小时,直线BP 与直线SC 所成角的余弦值为( ) A 5B 3C 2D .110【答案】A 【解析】 【分析】如图所示,连接,AC BC 交于点O ,连接PO ,得到PO ⊥底面ABCD ,根据13SP =求得1OP =,得到,A P 两点间距离最小为1AB =,以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,求得(1,2,0),(2,0,23)BP SC =-=--,结合向量的夹角公式,即可求解.【详解】如图所示,连接,AC BC 交于点O ,连接PO ,因为四棱锥S ABCD -为正四棱锥,可得PO ⊥底面ABCD , 由底面边长为24AC =,所以2AO =,在直角SOA 中,4,2SA AO ==,可得2223SO SA AO =- 又由13SP =SOP △中,可得221OP SP SO -=, 即点P 在以O 为圆心,以1为半径的圆上,所以当圆与OA 的交点时,此时,A P 两点间距离最小,最小值为1AB =, 以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,如图所示, 可得(1,0,0),(0,2,0),(0,0,3),(2,0,0)P B S C -,则(1,2,0),(2,0,23)BP SC =-=--,可得25cos ,54BP SC BP SC BP SC⋅-==⨯⋅, 所以直线BP 与直线SC 5故选:A.【方法技巧】向量法求两异面直线所成角的步骤 (1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角. 题型二:求直线与平面所成角例4.(2022·全国·模拟预测(理))如图为一个四棱锥与三棱锥的组合体,C ,D ,E 三点共线,已知三棱锥P -ADE 四个面都为直角三角形,且ED ⊥AD ,P A ⊥平面ABCE ,PE =3,CD =AD =2,ED =1,则直线PC 与平面P AE 所成角的正弦值等于( )A 3B 10C 15D 13 【答案】C 【解析】本题利用空间向量处理线面夹角问题,sin cos ,PC n θ=. 【详解】如图建立空间直角坐标系,()002P ,,,()2,2,0C ,()0,0,0A ,()2,1,0E -则有:()2,2,2PC =--,()2,1,0AE =-,()0,0,2AP =设平面P AE 的法向量(),,n x y z =,则有2020x y z -=⎧⎨=⎩,令1x =,则2,0y z ==,即()1,2,0n = ∴15cos ,5PC n PC n PC n⋅==-PC 与平面P AE 15 故选:C .例5.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215.(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出. 【详解】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,2),3,0,0)A P D ,(0,0,0),3,1,0)M C -又N 为PC 中点,所以313352,2222N AN ⎛-=- ⎝⎝. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin ||2725244AN n AN n θ⋅===++‖例6. (2020·北京高考真题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【总结提升】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 题型三:求二面角例7.(2021·天津高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值. (III )求二面角11A AC E --的正弦值. 【答案】(I )证明见解析;(II 3(III )13.【分析】(I )建立空间直角坐标系,求出1D F 及平面11A EC 的一个法向量m ,证明1m D F ⊥,即可得证; (II )求出1AC ,由1sin cos ,A m C θ=运算即可得解; (III )求得平面11AA C 的一个法向量DB ,由cos ,DB m DB m DB m⋅=⋅结合同角三角函数的平方关系即可得解.【详解】(I )以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立如图空间直角坐标系, 则()0,0,0A ,()10,0,2A ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()12,2,2C ,()10,2,2D , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以()2,1,0E ,()1,2,0F ,所以()11,0,2D F =-,()112,2,0AC =,()12,1,2A E =-, 设平面11A EC 的一个法向量为()111,,m x y z =,则11111111202202m x y m x y A A E z C ⎧⋅+=⎪⎨⋅+-=⎩=⎪=,令12x =,则()2,2,1m =-,因为1220m D F =⋅-=,所以1m D F ⊥,因为1D F ⊄平面11A EC ,所以1//D F 平面11A EC ; (II )由(1)得,()12,2,2AC =, 设直线1AC 与平面11A EC 所成角为θ, 则11123sin cos ,323m A C AC m m C A θ⋅===⨯⋅ (III )由正方体的特征可得,平面11AA C 的一个法向量为()2,2,0DB =-, 则822cos ,322DB m DB m DB m⋅===⨯⋅ 所以二面角11A AC E --211cos,3DB m -=.例8. (2021·全国·高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【解析】 【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =22BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM. 所以2112BC =.所以2BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫= ⎪ ⎪⎝⎭,()2,1,1BP =--,由222220220n BM n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为70 [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 21D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==,即二面角A PM B --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得. (2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.例9. (2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-=,所以BF ED ⊥. (2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272, 此时cos θ6272.所以()2min63sin 13θ⎛⎫=-= ⎪ ⎪⎝⎭112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即1211(2)B H s =+-121(2)B H s =+-.所以2211DH B H B D =+2221(2)s t s ++-2229225t t t t =+-+ 则11sin B D DHB DH∠=2229225t t t t =+-+29119222t =+⎛⎫-+ ⎪⎝⎭所以,当12t =时,()1min 3sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F 中,222115DF B D B F t ++在Rt ECF 中,223EF EC FC +D 作1B N 的平行线交EN 于点Q . 在Rt DEQ △中,2225(1)DE QD EQ t +=+-在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅()2315(1)t t ++=()222214sin 35t t DFE t -+∠+1sin 2DFESDF EF DFE =⋅∠2122142t t =-+13,2B NFS =1cos B NF DFES Sθ=22214t t =-+,()29sin 127t t θ=--+当12t =,即112B D =,面11BB C C 与面DFE 3 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维. 【总结提升】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 题型四: 利用向量求空间距离例10.(2022·江苏·扬中市第二高级中学模拟预测)在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,D ,E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为( ) A 6B 6C 26D .26【答案】A 【解析】 【分析】以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设CA CB a ==,求出11(,,1)22GE =,利用空间向量的数量积转化求解点1A 到平面ABD 的距离.【详解】解:如图所示,以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系, 设CA CB a ==,则(A a ,0,0),(0B ,a ,0),3(0,0,)2D ,1(A a ,0,3), 可得3(,,)222a a E ,1(,,)332a a G ,(,,1)66a a GE =,3(0,,)2BD a =-, 因为点E 在平面ABD 上的射影是ABD △的重心, 所以GE ⊥平面ABD ,所以0GE BD ⋅=,即30()10662a a a ⨯+⨯-+⨯=,解得3a =, 即11(,,1)22GE =,则点1A 到平面ABD 的距离为d ,E 是1A B 的中点, 所以2||6d GE ==. 故选:A.例11.(2022·上海·位育中学模拟预测)正方形ABCD 的边长是2E F ,、分别是AB 和CD 的中点,将正方形沿EF 折成直二面角 (如图所示).M 为矩形AEFD 内一点,如果MBE MBC MB ∠∠=,和平面BCF 所成角的正切值为13,那么点M 到直线EF 的距离为______.23123【解析】 【分析】利用空间向量运算处理,根据直线夹角cos cos ,a b α=结合MBE MBC ∠=∠可得1y =,再根据线面夹角sin cos ,n BM θ=运算求解2z =【详解】如图,以E 为坐标原点建立空间直角坐标系则()()()0,0,0,1,0,0,1,2,0E B C ,设()()0,,02,01M y z y z ≤≤≤≤()()()1,0,0,0,2,0,1,,EB BC BM y z ===-则22221cos ,,cos ,11EB BM BC BM EB BM BC BM EB BMBC BMy z y z ⋅-⋅====++++∵MBE MBC ∠=∠222211y z y z ++++,即1y =∴()1,1,BM z =-平面BCF 的一个法向量()0,0,1n =,则2cos ,2n BM n BM n BMz ⋅==+∵MB 和平面BCF 所成角的正切值为132102z=+,则2z =∴点M 到直线EF 22例12.(2022·全国·高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值. 【答案】2 3【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==, 解得2h =所以点A 到平面1A BC 2 (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =12AA AB ==,122A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-, 则11cos ,222m n m n m n⋅===⨯⋅, 所以二面角A BD C --21312⎛⎫-= ⎪⎝⎭【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.。
2020 年高考数学(理)总复习:立体几何中的向量方法题型一利用向量证明平行与垂直【题型重点】 向量证明平行与垂直的4 步骤(1)成立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系; (2)成立空间图形与空间向量之间的关系,用空间向量表示出问题中所波及的点、直线、平面的因素;(3)经过空间向量的运算求出平面向量或法向量,再研究平行、垂直关系; (4)依据运动结果解说有关问题.【例 1】如图,在直三棱柱 ADE —BCF 中,面 ABFE 和面 ABCD 都是正方形且相互垂直,点 M 为 AB 的中点,点 O 为 DF 的中点.运用向量方法证明:(1)OM ∥平面 BCF ; (2)平面 MDF ⊥平面 EFCD . 【证明】方法一(1)由题意,得 AB , AD , AE 两两垂直,以点 A 为原点成立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0) , B(1,0,0) , C(1,1,0) ,D (0,1,0) ,F(1,0,1) , M1,0,0 ,2O 1 ,1 ,1.2 2 2→1 1→OM = 0, ,2 ,BA = (- 1,0,0),2→ → → →∴ OM ·BA = 0, ∴ OM ⊥BA.∵棱柱 ADE — BCF 是直三棱柱,→∴ AB ⊥平面 BCF ,∴ BA 是平面 BCF 的一个法向量, 且 OM? 平面 BCF ,∴ OM ∥平面 BCF .(2)设平面 MDF 与平面 EFCD 的一个法向量分别为 n 1= (x 1,y 1,z 1), n 2= (x 2, y 2, z 2).→ → ∵ DF = (1,- 1,1), DM =1 →→,- 1,1),, 1,0 , DC = (1,0,0),CF =(02→x 1- y 1+ z 1=0, n 1·DF = 0,得 1由→2x 1- y 1= 0,n 1·DM = 0,令 x 1= 1,则 n 1= 1, 1 ,1.同理可得 n 2= (0,1,1) .2 2∵ n 1·n 2= 0,∴平面 MDF ⊥平面 EFCD .方法二→→→→1 → → 1→ (1)OM = OF +FB + BM = DF - BF +2 BA21→→→ 1 → 1 → 1 → 1 →= (DB + BF)- BF + BA =-2 BD - BF + BA22221 → → 1 → 1→=- ( BC + BA)-BF + BA2221 → 1 →=- 2BC -2BF.∴向量 → 与向量 →,→共面,OM BF BC又 OM? 平面 BCF ,∴ OM ∥平面 BCF .(2)由题意知, BF , BC , BA 两两垂直,→ → → → → ∵ CD =BA , FC =BC -BF ,→ →1 1 BF → ∴ OM ·CD =2BCBA = 0,2→ →1 1 OM ·FC =2BCBF2→ →·(BC - BF)1 →2 1 → 2= 0.=- BC + BF 2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C , CD , FC ? 平面 EFCD ,∴ OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴平面 MDF ⊥平面 EFCD .题组训练一 利用向量证明平行与垂直如图,在底面是矩形的四棱锥 P — ABCD 中,PA ⊥底面 ABCD ,点 E ,F 分别是 PC ,PD 的中点, PA = AB = 1, BC = 2.(1)求证: EF ∥平面 PAB ; (2)求证:平面 PAD ⊥平面 PDC .【证明】(1) 以点 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴, AP 所在直线为 z 轴,成立以下图的空间直角坐标系, 则 A(0,0,0) ,B(1,0,0) ,C(1,2,0),D(0,2,0) ,P(0,0,1) .∵点 E , F 分别是 PC , PD 的中点,∴ E1,1,1,F 0,1,1,2 22→ 1 →→ 1 → EF = 2 ,0,0 ,AB =(1,0,0) .∵ EF =-AB ,2→ → ,即 EF ∥ AB ,∴ EF ∥ AB又 AB? 平面 PAB ,EF? 平面 PAB ,∴ EF ∥平面 PAB.→ →→ → → , (2)由 (1) 可知,PB = (1,0,- 1),PD = (0,2 ,- 1),AP = (0,0,1) ,AD =(0,2,0) ,DC = (1,0,0) → → → → → → → → ∵AP ·DC = (0,0,1) (1,0,0)· = 0,AD ·DC = (0,2,0) (1,0,0)· = 0,∴ AP ⊥ DC ,AD ⊥ DC ,即 AP ⊥DC , AD ⊥DC .又 AP ∩AD = A , AP ,AD ? 平面 PAD ,∴ DC ⊥平面 PAD.∵ DC? 平面 PDC ,∴平面 PAD ⊥平面 PDC.题型二利用空间向量求空间角【题型重点】的法向量的夹角的关系,必定要注意线面角θ与夹角 α的关系为sin θ= |cos α|.2.求二面角 θ,主要经过两平面的法向量n , m 的夹角求得,即先求 |cos 〈n , m 〉 |,再依据所求二面角是钝角仍是锐角写出其他弦值.若θ为锐角,则 cos θ= |cos 〈 n , m 〉 |;若 θ为钝角,则 cos θ=- |cos 〈 n ,m 〉|.【例 2】如图, AD ∥BC 且 AD = 2BC , AD ⊥ CD ,EG ∥ AD 且 EG = AD , CD ∥ FG 且 CD = 2FG , DG ⊥平面 ABCD , DA = DC = DG = 2.(1)若 M 为 CF 的中点, N 为 EG 的中点,求证: MN ∥平面 CDE ;(2)求二面角 E-BC- F 的正弦值;(3) 若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为 60°,求线段 DP 的长.【解】 依题意,能够成立以 D 为原点,分别以 → → →轴、 y 轴、 zDA , DC , DG 的方向为 x 轴的正方向的空间直角坐标系 (如图 ),可得 D(0,0,0) ,A(2,0,0) ,B(1,2,0) ,C(0,2,0) ,E(2,0,2) ,F(0,1,2) , G(0,0,2) , M 0,3,1 , N(1,0,2) .2(1)证明:依题意得 → →DC = (0,2,0), DE = (2,0,2) .设 n 0= (x , y ,z)为平面 CDE 的法向量,则2y = 0, 即不如令 z =- 1,2x + 2z = 0.可得 n 0=(1,0,- 1).n 0·DC →= 0,→n 0·DE =0,→ 3 又 MN = 1,,1 2→,可得 MN ·n 0= 0.又因为直线 MN? 平面 CDE ,所以 MN ∥平面 CDE .→ →(2)解:依题意,可得 BC =(-1,0,0) , BE = (1,- 2,2),→CF = (0,- 1,2).→ n ·BC = 0,设 n =(x ,y , z)为平面 BCE 的法向量,则→n ·BE =0,-x = 0, 即不如令 z = 1,可得 n = (0,1,1) .x -2y + 2z = 0.→ m ·BC =0,设 m = (x , y , z)为平面 BCF 的法向量,则m ·CF →= 0,- x = 0, 即不如令 z = 1,可得 m = (0,2,1) . - y + 2z = 0.m ·n310所以有 cos 〈 m , n 〉== ,10于是 sin 〈 m , n 〉= 10 .10所以,二面角E-BC-F 的正弦值为10 .→(3)解:设线段 DP 的长为 h(h ∈ [0,2]) ,则点 P 的坐标为 (0,0,h),可得 BP = (- 1,- 2,h).→为平面 ADGE 的一个法向量, 易知, DC = (0,2,0) → → → → 2|BP ·DC |故 |cos 〈 BP , DC 〉 |= → → = 2 ,|BP||DC | h + 5 由题意,可得2 = sin 60 =° 3,h 2+ 52解得 h = 33∈ [0,2] .3所以,线段DP 的长为 3 .题组训练二 利用空间向量求空间角如图,四周体 ABCD 中,△ ABC 是正三角形, △ACD 是直角三角形, ∠ABD =∠ CBD ,AB= BD.(1)证明:平面ACD ⊥平面 ABC;(2)过 AC 的平面交BD 于点 E,若平面AEC 把四周体ABCD 分红体积相等的两部分,求二面角D- AE- C 的余弦值.【分析】(1) 证明:由题设可得,△ ABD≌△ CBD,进而AD=DC又△ ACD 是直角三角形,所以∠ACD= 90°取 AC 的中点 O,连结 DO, BO,则 DO ⊥ AC, DO = AO又因为△ ABC 是正三角形,故BO⊥ AC.所以∠ DOB 为二面角D- AC- B 的平面角.在 Rt△AOB 中, BO 2+AO 2= AB2.又 AB= BD,所以 BO2+DO2= BO2+ AO2= AB2=BD 2,故∠ DOB = 90°.所以平面 ACD ⊥平面 ABC.→(2)由题设及 (1)知, OA, OB, OC 两两垂直,以O 为坐标原点,OA的→方向为 x 轴正方向, |OA|为单位长,成立以下图的空间直角坐标系O- xyz.则 A(1,0,0) , B(0, 3, 0), C(- 1,0,0), D (0,0,1)1由题设知,四周体 ABCE 的体积为四周体ABCD 的体积的,进而E到平面 ABC 的距离为 D 到平面 ABC 的距离的1,即 E 为 DB 的中点,得 E 0,3 1 →2,2.故AD=2→→ 3 1 (- 1,0,1), AC= (- 2,0,0), AE=1, , .2 2设 n=(x,y,z)是平面DAE的法向量,→- x+ z= 0,n·AD=0,即则3 1→- x+n·AE=0,2 y+2z=0.可取 n=31,,1.3m·AC→=0,设 m 是平面AEC的法向量,则同理可得m=(0,-1,3).→m·AE=0,则 cos〈n,m〉=n·m=7.|n||m| 77所以二面角D- AE- C 的余弦值为7 .题型三利用空间向量解决探究性问题【题型重点】利用空间向量巧解探究性问题(1)空间向量最合适于解决立体几何中的探究性问题,它无需进行复杂的作图、论证、推理,只要经过坐标运算进行判断.(2) 解题时,把要成立的结论看作条件,据此列方程或方程组,把“能否存在”问题转变为“点的坐标能否有解,能否有规定范围内的解”等,所认为使问题的解决更简单、有效,应擅长运用这一方法解题.【例 3】如图,在长方体ABCD -A1B1C1D1中, AB= AA1= 1, E 为 BC 中点.(1)求证: C1D ⊥ D1E;(2)在棱 AA1上能否存在一点M,使得 BM∥平面 AD1E?若存在,求AM的值,若不存在,说明原因.AA 1(3)若二面角B1- AE- D1的大小为 90°,求 AD 的长.【分析】以 D 为原点,成立以下图的空间直角坐标系D- xyz 设 AD= a,则 D (0,0,0) ,A(a,0,0),B(a,1,0),B1(a,1,1),C1(0,1,1) ,D 1(0,0,1) ,E a ,1,0 , 2→→ a1 ,∴ C1 D= (0,- 1,- 1), D1E=,1,2→→=0,∴ C(1)证明: C1 D·D 1E 1D⊥D 1E.AM(2)设AA1= h,则 M(a,0, h),→→ a,∴ BM= (0,-1, h), AE=,1,02→,AD1= (- a,0,1)设平面 AD 1E 的法向量为n=(x,y,z),→ aAE·n=-2x+ y= 0,则→AD 1·n=- ax+ z= 0,令 x= 2,∴平面 AD 1E 的一个法向量为n=(2,a,2a),→→∵ BM∥平面 AD 1E,∴ BM ⊥n,即 BM·n= 2ah- a=0,∴ h=1 .2即在 AA 1上存在点 M,使得 BM∥平面 AD 1E,此时AM=1.AA1 2→(3)连结 AB1, B1E,设平面B1AE 的法向量为m=(x′,y′,z′),AE=(0,1,1) ,→a则 AE·m=-2x′+ y′=0,→AB1·m= y′+ z′=0,令 x′= 2,∴平面 B1AE 的一个法向量为m=(2,a,-a).∵二面角 B1- AE- D1的大小为90°,∴ m⊥ n,∴ m·n=4+a2-2a2=0,a →,1,0 , AB1=2∵a>0 ,∴ a= 2,即 AD= 2.题组训练三利用空间向量解决探究性问题如图,已知等边△ ABC中,E,F分别为AB,AC边的中点, M 为 EF 的中点, N 为 BC 边上一点,且1 CN= BC,4将△ AEF 沿 EF 折到△ A′EF 的地点,使平面A′EF ⊥平面EFCB .(Ⅰ )求证:平面 A′MN ⊥平面 A′BF;(Ⅱ )求二面角E-A′F-B 的余弦值.【解】(Ⅰ )因为 E,F 为等边△ ABC 的 AB ,AC 边的中点,所以△A′EF 是等边三角形,且 EF∥BC.因为 M 是 EF 的中点,所以A′M⊥ EF.又因为平面A′EF⊥平面 EFCB ,A′M ? 平面 A′EF ,所以 A′M⊥平面 EFCB又 BF? 平面 EFCB ,所以 A′M⊥ BF.1因为 CN =4BC,所以 MF 綊 CN,所以 MN ∥ CF .在正△ABC 中知 BF⊥ CF ,所以 BF⊥ MN .而 A′M∩MN= M,所 BF ⊥平面 A′MN.又因为 BF ? 平面 A′BF ,所以平面A′MN ⊥平面 A′BF .(Ⅱ )设等边△ABC 的边长为 4,取 BC 中点 G,连结 MG ,由题设知 MG ⊥ EF,由 (Ⅰ ) 知A′M⊥平面 EFCB ,又 MG? 平面 EFCB ,所以 A′M⊥ MG ,如图成立空间→直角坐标系M- xyz,则 F(- 1,0,0),A′(0,0, 3),B(2,3,0),FA= (1,0,→3), FB= (3,3, 0).设平面 A′BF 的一个法向量为n=(x,y,z),则由→x+ 3z= 0,FA·n= 0,3, 3,1).得令 z= 1,则n= (-→3x+3y= 0,FB ·=n 0,平面 A′EF 的一个法向量为p=(0,1,0),p·n313所以 cos〈n,p〉==,明显二面角 E- A′F- B 是锐角,所以二面角E-A′F- B 的余弦值为3 1313.题型四成立空间直角坐标系的方法坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题常常需要成立空间直角坐标系,依照空间几何图形的构造特点,充足利用图形中的垂直关系或构造垂直关系来成立空间直角坐标系,是运用坐标法解题的重点,下边举例说明几种常有的空间直角坐标系的建立策略.方法一利用共极点的相互垂直的三条棱建立直角坐标系【例 4】已知直四棱柱 ABCD -A1B1C1D1中, AA1= 2,底面 ABCD 是直角梯形,∠ A 为直角, AB∥ CD ,AB =4, AD = 2,DC= 1,求异面直线BC1与 DC 所成角的余弦值.【分析】如图,以 D 为坐标原点,分别以DA ,DC ,DD 1所在直线为 x,y,z 轴成立空间直角坐标系,则 C(0,1,0) , C1(0,1,2) , B(2,4,0) ,→→∴ BC1= (- 2,- 3,2), CD = (0,- 1,0).→→→ →3 17 |BC1·CD |=.设 BC1与 CD所成的角为θ,则 cos θ=→→17|BC 1||CD|317故所求异面直线所成角的余弦值为17 .方法二利用线面垂直关系建立直角坐标系【例 5】如图,在三棱柱 ABC-A1B1C1中,AB⊥侧面 BB1C1C,E 为棱 CC1上异于 C,C1 的一点, EA⊥ EB1.已知 AB=2, BB1=π2, BC= 1,∠ BCC1=.3求二面角 A-EB 1- A1的平面角的正切值.【分析】如图,以 B 为原点,分别以BB1, BA 所在直线为y 轴、z 轴,过 B 点垂直于平面ABB1A1的直线为x 轴成立空间直角坐标系.因为 BC= 1, BB1= 2, AB=πABC- A1B1C1中,2,∠ BCC1=,∴在三棱柱3有 B(0,0,0) , A(0,0,3 1 3 1, C13 3 2), B1(0,2,0) , C , ,0 , ,0 , ,0 .2 2 2 2 2 23, a,0 ,且- 1 3 →设 E <a< ,即 EA=2 2 2→→由 EA⊥ EB1,得 EA·EB 1= 0,3 →1=3, a, 2 ,EB ,2 a,0 .2 23, a, 2 ·3,2 a,03 2 3即 2 2 =4+ a(a- 2)= a -2a+4=0,∴1 3a · a2 21 3 3 1= 0,即 a=或 a= (舍去 ).故 E , ,0 .2 2 2 2→→→→→由已知有 EA⊥ EB1,B1 A1⊥ EB1,故二面角A- EB1-A1的平面角θ的大小为向量 B1A1与→EA的夹角.→→,→因为 B1A1= BA= (0,0 2), EA=3,1,2, 2 2→ →2 6 2EA·B1A1故 cos θ=→ →=2× 3 =3,即 tan θ=2.|EA||B1A1|2故所求二面角的平面角的正切值为2 .方法三利用面面垂直关系建立直角坐标系【例 6】如图,在四棱锥V- ABCD 中,底面 ABCD 是正方形,侧面 VAD 是正三角形,平面VAD⊥底面 ABCD .(1)求证 AB⊥平面 VAD;(2)求二面角A- VD-B 的余弦值.间直角坐标系.设 AD = 2,则 A(1,0,0), D (- 1,0,0), B(1,2,0) , V(0,0, 3),→ →,- 3).∴ AB = (0,2,0) , VA =(1,0→ →由 AB ·VA = (0,2,0) (1,0·,- 3)= 0,得 AB ⊥ VA.又 AB ⊥ AD ,进而 AB 与平面 VAD 内两条订交直线VA , AD 都垂直,∴ AB ⊥平面 VAD.(2)设 E 为 DV 的中点,则 E1,0, 3 ,2 2→3 3 →3 3 ,∴ EA =2,0,, EB =,2,222→DV = (1,0, 3).→ → 3 3= 0,∴ EB ⊥ DV . ∴ EB ·DV = - 2 2又 EA ⊥ DV ,所以∠ AEB 是所求二面角的平面角.→ → → →21 EA ·EB∴ cos 〈 EA , EB 〉= → → = 7 .|EA||EB|21故所求二面角的余弦值为7 .方法四利用正棱锥的中心与高所在直线建立直角坐标系【例 7】已知正四棱锥 V - ABCD 中, E 为 AC 中点,正四棱锥底面边长为2a ,高为h.(1)求∠ DEB 的余弦值;(2)若 BE ⊥ VC ,求∠ DEB 的余弦值.【分析】如图,以 V 在平面 ABCD 的射影 O 为坐标原点成立空间直角坐标系,此中Ox ∥ BC , Oy ∥AB ,则由 AB=2a , OV =h ,有 B( a , a,0),C(- a ,a,0), D(- a ,- a,0), V(0,0,h), Ea , a, h ,即2 2 2→3a a hBE =2,,2 2→ a 3a h , DE =,, 22 2→ , VC = (- a , a ,- h).→ →→ →2 2BE ·DE- 6a + h(1)cos 〈 BE , DE 〉=→ →=22 ,10a+ h|BE||DE |- 6a 2+h 2即 cos ∠ DEB = 10a 2+ h 2 .→ →(2)因为 BE ⊥ AC ,所以 BE ·VC = 0,即3a , a , h ·(- a ,a ,- h)=0,2 2 23222 - a- h= 0,解得 h = 2a.所以 a2 22→ →- 6a 2+h 2 1这时 cos 〈BE , DE 〉= 10a 2+ h 2=- 3,即 cos ∠ DEB =- 13.【专题训练】1.如图,在四棱锥 P - ABCD 中,PC ⊥底面 ABCD ,底面 ABCD 是直角梯形, AB ⊥ AD , AB ∥ CD , AB =2AD = 2CD =2, PE = 2BE.(1)求证:平面 EAC ⊥平面 PBC ;6(2)若二面角 P - AC - E 的余弦值为 3 ,求直线 PA 与平面 EAC所成角的正弦值.【分析】(1) 证明:∵ PC ⊥底面 ABCD , AC? 平面 ABCD ,∴PC ⊥AC .∵ AB = 2,AD = CD = 1,∴ AC = BC = 2,∴ AC 2+ BC 2= AB 2,∴ AC ⊥ BC ,又 BC ∩PC=C ,∴ AC ⊥平面 PBC ,又 AC? 平面 EAC ,∴平面 EAC ⊥平面 PBC.得: C(0,0,0) , A(1,1,0) , B(1,- 1,0),设 P(0,0, a)(a > 0),则 E 2 , 2 , a,3 3 3→→ →CA = (1,1,0) , CP = (0,0, a), CE =2 ,2 , a,33 3→ →取 n =(1,- 1,0),则 m ·CP = m ·CA = 0,∴ n 为平面 PAC 的法向量.→= 0 x + y = 0 设 n =(x ,y , z)为平面 EAC 的法向量,则n ·EA,即,→ 2x - 2y + az =0n ·CE = 0取 n =(a ,- a ,- 4) ,∵二面角 P -AC -E 的余弦值为6,3∴ |cos 〈 m , n 〉|=|m ·n |=2a= 6,|m ||n |2× 2a 2+ 163→解得 a = 4,∴ n = (4,- 4,- 4), PA = (1,1,- 4). 设直线 PA 与平面 EAC 所成角为 θ,→→162 6|PA ·n |= = ,则 sin θ= |cos 〈 PA , n 〉 |=→918× 16×3|PA||n |∴直线 PA 与平面 EAC 所成角的正弦值为2 9 6.2.如图,四棱锥 P - ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD ,AB =BC =12AD ,∠ BAD =∠ ABC =90°,E 是PD 的中点.(1)证明:直线 CE ∥平面 PAB ; (2)点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成角为 45°,求二面角 M - AB -D 的余弦值.【分析】(1) 证明:取 PA 的中点 F ,连结 EF ,BF .因为 E 是 PD 的中点,所以EF ∥AD , EF = 1AD ,由∠ BAD =∠ ABC = 90°得 BC ∥ AD ,21又 BC = 2AD ,所以 EF 綊 BC.四边形 BCEF 为平行四边形, CE ∥ BF.又 BF? 平面 PAB ,CE ? 平面 PAB ,故 CE ∥平面 PAB .→→ (2)由已知得 BA ⊥AD ,以 A 为坐标原点, AB 的方向为 x 轴正方向, |AB|为单位长,成立以下图的空间直角坐标系 A - xyz ,则 A(0,0,0),B(1,0,0) ,C(1,1,0) ,P(0,1, → →3),PC = (1,0,- 3),AB =(1,0,0) ,→ → 设 M(x ,y ,z)(0< x<1) 则 BM = (x - 1,y ,z) ,PM = (x ,y - 1,z - 3),因为 BM 与底面 ABCD 所成的角为 45°,而 n = (0,0,1)是底面 ABCD 的法向量,所以,|cos →|z|2 22 2〈BM , n 〉|= sin 45 °, x - 1 2+ y 2+ z2=2 ,即 (x - 1)+ y - z = 0. ①→ →又 M 在棱 PC 上,设 PM = λPC ,则x = λ, y = 1, z = 3- 3λ. ②22x = 1+ 2x = 1- 2 由①,②解得y =1 舍去, y = 1.66z =- 2z = 2所以 M2 6 →2 6 1,1,,进而 AM = 1,1,.2222设 m = (x 0, y 0, z 0) 是平面 ABM 的法向量,则→2- 2 x 0+ 2y 0+ 6z 0= 0, m ·AM = 0,即→ = 0, x 0= 0,m ·AB以可取 m = (0,-6, 2).于是 cos 〈 m , n 〉= m ·n=10,所以二面角 M -AB -D|m ||n | 5的余弦值为105.3.以下图的几何体中,四边形ABCD 为等腰梯形,AB∥ CD, AB= 2AD = 2, ∠ DAB =60°,四边形 CDEF 为正方形,平面CDEF ⊥平面 ABCD .(1)若点 G 是棱 AB 的中点,求证:EG∥平面 BDF ;(2)求直线 AE 与平面 BDF 所成角的正弦值;FH(3)在线段 FC 上能否存在点H,使平面 BDF ⊥平面 HAD ?若存在,求HC的值;若不存在,说明原因.(1)【证明】因为四边形因为G是棱由已知得EF∥ CD ,且 EF=CD . ABCD 为等腰梯形,所以BG∥ CD . AB 的中点,所以BG= CD .所以 EF ∥ BG,且 EF= BG,故四边形EFBG 为平行四边形,所以EG∥FB .因为 FB ? 平面 BDF, EG? 平面 BDF ,所以 EG∥平面 BDF .(2)【解】因为四边形CDEF 为正方形,所以ED⊥ DC.因为平面 CDEF ⊥平面 ABCD ,平面 CDEF ∩平面 ABCD =DC , DE ? 平面 CDEF ,所以 ED ⊥平面 ABCD .在△ ABD 中,因为∠ DAB =60°, AB= 2AD= 2,所以由余弦定理,得BD =3,所以 AD ⊥ BD.在等腰梯形ABCD 中,可得DC=CB =1.如图,以 D 为原点,以DA ,DB , DE 所在直线分别为x, y, z 轴,成立空间直角坐标系,则 D(0, 0,0), A(1, 0,0), E(0, 0, 1), B(0,1 3,3, 0), F ,,12 2→ →1 3 , 所以 AE = (- 1, 0, 1), DF =2,,12DB →= (0,3, 0).设平面 BDF 的法向量为n = (x , y ,z ),→3y = 0,n ·DB = 0,所以因为1 3→-2x + 2 y +z =0.n ·DF =0,取 z = 1,则 x = 2,y = 0,则 n = ( 2,0, 1).→10, 设直线 AE 与平面 BDF 所成的角为 θ,则 sin θ=→= |AE ·n |=cos 〈 AE , n 〉||n | 10|→ | |AE所以 AE 与平面 BDF 所成角的正弦值为1010.(3)【解】 线段 FC 上不存在点 H ,使平面 BDF ⊥平面 HAD .证明以下:假定线段FC 上存在点 H ,1 3 →1 3设 H,,t (0≤t ≤1),则 DH =2 ,,t222设平面 HAD 的法向量为m =(a , b ,c ),→a = 0,m ·DA = 0,因为所以13 →- a +2 b +tc = 0.m ·DH = 0,2取 c = 1,则 a = 0, b =-2t ,得 m = 0,2,1.33要使平面 BDF ⊥平面 HAD ,只要 m ·n = 0, 即 2×0-2t ×0+ 1×1= 0, 此方程无解. 3所以线段 FC 上不存在点 H ,使平面 BDF ⊥平面 HAD .4.如图,已知圆锥 OO1和圆柱 O1O2的组合体 (它们的底面重合 ),圆锥的底面圆 O1半径为 r =5, OA 为圆锥的母线, AB 为圆柱 O1O2的母线, D, E 为下底面圆 O2上的两点,且 DE = 6,AB=, AO= 5 2, AO⊥ AD .(1)求证:平面 ABD ⊥平面 ODE;(2)求二面角 B— AD—O 的正弦值.(1)【证明】依题易知,圆锥的高为 h= 5 2 2- 52= 5,又圆柱的高为 AB=,AO⊥ AD ,所以OD 2= OA2+ AD 2,因为 AB⊥BD ,所以 AD2= AB2+ BD2,连结 OO1,O1O2,DO 2,易知 O, O1, O2三点共线,OO2⊥ DO2,所以 OD2= OO22+O2D 2,所以 BD 2=OO22+O2D2-AO2-AB2=+ 5)2+ 52- (52)2-2= 64,解得 BD =8,又因为 DE =6,圆 O2的直径为10,圆心 O2在∠ BDE 内,所以∠ BDE= 90°,所以 DE ⊥ BD .因为 AB ⊥平面 BDE ,所以 DE ⊥ AB,因为 AB ∩BD = B,AB,BD ? 平面 ABD ,所以 DE ⊥平面 ABD .又因为 DE ? 平面 ODE ,所以平面ABD ⊥平面 ODE.(2)【解】如图,以 D 为原点,DB, DE 所在的直线为x, y 轴,成立空间直角坐标系.则 D(0,0,0) , A(8,0,6.4), B(8,0,0) , O(4,3,11.4).→→→,所以 DA= (8,0,6.4) , DB = (8,0,0) , DO= (4,3,11.4)设平面 DAO 的法向量为→u=(x,y,z),所以DA·u=8x+=0,→DO·u= 4x+ 3y+= 0,令 x= 12,则u= (12,41,- 15).可取平面 BDA 的一个法向量为v=(0,1,0),所以 cos〈u,v〉=u·v=41=82,所以二面角B—AD — O 的正弦值为3 2 |u||v| 5 82 10 10.。
专题13 立体几何中的向量方法1.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22答案 C解析 方法一 由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2), ∴BM →=(1,1,2)-(2,2,0)=(-1,-1,2),AN →=(0,1,2). ∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=-1+4-2+-2+22×02+12+22=36×5=3010.2.如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A .[33,1] B .[63,1] C .[63,223] D .[223,1]答案 B解析 根据题意可知平面A 1BD ⊥平面A 1ACC 1且两平面的交线是A 1O ,所以过点P 作交线A 1O 的垂线PE , 则PE ⊥平面A 1BD ,所以∠A 1OP 或其补角就是直线OP 与平面A 1BD 所成的角α. 设正方体的边长为2,则根据图形可知直线OP 与平面A 1BD 可以垂直.3.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在直线BC 1上运动时,有下列三个命题:①三棱锥A -D 1PC 的体积不变;②直线AP 与平面ACD 1所成角的大小不变;③二面角P -AD 1-C 的大小不变.其中真命题的序号是________.答案 ①③解析 ①中,∵BC 1∥平面AD 1C ,∴BC 1上任意一点到平面AD 1C 的距离相等,所以体积不变,正确;②中,点P 在直线BC 1上运动时,直线AB 与平面ACD 1所成角和直线AC 1与平面ACD 1所成角不相等,所以不正确;③中,点P 在直线BC 1上运动时,点P 在平面AD 1C 1B 中,既二面角P —AD 1-C 的大小不受影响,所以正确.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为______________. 答案3510解析 以点A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,∴点F 到平面A 1D 1E 的距离为 d =|A 1F →·n ||n |=|12-2|5=3510.5.如图,直三棱柱ABC —A 1B 1C 1中,AA 1=AB =AC =1,点E ,F 分别是CC 1,BC 的中点,AE ⊥A 1B 1,点D 为棱A 1B 1上的点.(1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414?若存在,说明点D 的位置,若不存在,说明理由.(1)证明 ∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB ,又∵AA 1⊥AB ,AA 1⊂面A 1ACC 1,AE ⊂面A 1ACC 1,AA 1∩AE =A , ∴AB ⊥面A 1ACC 1.又∵AC ⊂面A 1ACC 1,∴AB ⊥AC ,以A 为原点建立如图所示的空间直角坐标系Axyz ,则有A (0,0,0),E ⎝⎛⎭⎪⎫0,1,12,F ⎝ ⎛⎭⎪⎫12,12,0,A 1(0,0,1),B 1(1,0,1),由(1)可知平面ABC 的法向量n =(0,0,1). 设平面DEF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·FE →=0,m ·DF →=0,∵FE →=(-12,12,12),DF →=⎝ ⎛⎭⎪⎫12-λ,12,-1,∴⎩⎪⎨⎪⎧-12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,即⎩⎪⎨⎪⎧x =3-λz ,y =1+2λ-λz ,令z =2(1-λ),则n =(3,1+2λ,2(1-λ)). ∵平面DEF 与平面ABC 所成锐二面角的余弦值为1414, ∴|cos〈m ,n 〉|=|m·n||m||n |=1414,即-λ|9++2λ2+-λ2=1414, 解得λ=12或λ=74(舍),∴当点D 为A 1B 1中点时满足要求.6.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ; (2)求二面角E -BC -A 的余弦值.由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF , 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.易错起源1、利用向量证明平行与垂直例1、如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ;(2)平面MDF ⊥平面EFCD .证明 方法一 由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.(1)OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF .(2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·BA →=0,OM →·FC →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·(BC →-BF →)=-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .【变式探究】如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .证明 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,即EF ∥AB ,又AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .(2)由(1)可知PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A , ∴DC ⊥平面PAD . ∵DC ⊂平面PDC , ∴平面PAD ⊥平面PDC . 【名师点睛】用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.【锦囊妙计,战胜自我】设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)则有:(1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 易错起源2、利用空间向量求空间角例2、如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.【变式探究】如图,在直三棱柱ABC —A 1B 1C 1中,底面△ABC 是直角三角形,AB =AC =1,AA 1=2,点P 是棱BB 1上一点,满足BP →=λBB 1→(0≤λ≤1).(1)若λ=13,求直线PC 与平面A 1BC 所成角的正弦值;(2)若二面角P —A 1C —B 的正弦值为23,求λ的值.解 以点A 为坐标原点O ,分别以AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为AB =AC =1,AA 1=2,则A (0,0,0),B (1,0,0),C (0,1,0),A 1(0,0,2),B 1(1,0,2),P (1,0,2λ).从而平面A 1BC 的一个法向量为n 1=(2,2,1). 设直线PC 与平面A 1BC 所成的角为θ,则sin θ=|cos 〈CP →,n 1〉|=⎪⎪⎪⎪⎪⎪⎪⎪CP →·n 1|CP →|·|n 1|=2233, 所以直线PC 与平面A 1BC 所成的角的正弦值为2233. (2)设平面PA 1C 的法向量为n 2=(x 2,y 2,z 2),A 1P →=(1,0,2λ-2), 由⎩⎪⎨⎪⎧n 2·A 1C →=0,n 2·A 1P →=0,得⎩⎪⎨⎪⎧y 2-2z 2=0,x 2+λ-z 2=0.【名师点睛】(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化. 【锦囊妙计,战胜自我】设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22.(2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角设平面α、β的夹角为θ(0≤θ<π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.易错起源3、利用空间向量求解探索性问题例3、如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由. 解 (1)由题意,易得DM ⊥DA ,DM ⊥DC ,DA ⊥DC .如图所示,以点D 为坐标原点,DA ,DC ,DM 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.=|NE →·AM →||NE →|·|AM →|=1252×2=1010.所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN ,连接AE . 因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),λ∈[0,1],【变式探究】如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面于直线AB ,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP .(1)设点M 为棱PD 的中点,求证:EM ∥平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于25?若存在,试确定点N 的位置;若不存在,请说明理由.(1)证明 由已知,平面ABCD ⊥平面ABPE ,且BC ⊥AB ,则BC ⊥平面ABPE ,所以BA ,BP ,BC 两两垂直,故以点B 为原点,BA →,BP →,BC →分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.则P (0,2,0),D (2,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,E (2,1,0),C (0,0,1),所以EM →=⎝ ⎛⎭⎪⎫-1,0,12. 易知平面ABCD 的一个法向量n =(0,1,0),所以EM →·n =(-1,0,12)(0,1,0)=0,取y 1=1,得平面PCD 的一个法向量等于n 1=(0,1,2),假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成的角α的正弦值等于25.设PN →=λPD →(0≤λ≤1),则PN →=λ(2,-2,1)=(2λ,-2λ,λ),BN →=BP →+PN →=(2λ,2-2λ,λ).所以sin α=|cos 〈BN →,n 1〉|=|BN →·n 1||BN →||n 1|=25×λ2+-2λ2+λ2=25×9λ2-8λ+4=25. 所以9λ2-8λ-1=0,解得λ=1或λ=-19(舍去).因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值等于25.【名师点睛】空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.【锦囊妙计,战胜自我】存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D.2.如图,点P 是单位正方体ABCD —A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( )A .0B .1C .0或1D .任意实数答案 C解析 AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos∠BAC 1=3×13=1,故选C.3.在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D -ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1 答案 D解析 如图所示,4.如图,三棱锥A -BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为( )A.36B.32C.336D.12答案 A解析 设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB → =12-12cos60°-cos60°+cos60°=14. ∴cos 〈CE →,BD →〉=CE →·BD →|CE →||BD →|=1432=36.选A.5.已知正三棱柱ABC —A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) A.64B.104 C.22D.32答案 A6.正方体ABCD —A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________. 答案 [0,1]解析 以DA 所在的直线为x 轴,DC 所在的直线为y 轴,DD 1所在的直线为z 轴,建立空间直角坐标系Dxyz .则D (0,0,0),C (0,1,0),A (1,0,0),B (1,1,0),D 1(0,0,1). ∴DC →=(0,1,0),BD 1→=(-1,-1,1). ∵点P 在线段BD 1上运动,∴设BP →=λBD 1→=(-λ,-λ,λ),且0≤λ≤1. ∴AP →=AB →+BP →=DC →+BP →=(-λ,1-λ,λ), ∴DC →·AP →=1-λ∈[0,1].7.在一直角坐标系中,已知点A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A 、B 两点间的距离为________.答案 217解析 如图为折叠后的图形,其中作AC ⊥CD ,BD ⊥CD ,则AC =6,BD =8,CD =4,两异面直线AC ,BD 所成的角为60°, 故由AB →=AC →+CD →+DB →, 得|AB →|2=|AC →+CD →+DB →|2=68, ∴|AB →|=217.8.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确命题的序号是________.答案 ①②解析 设正方体的棱长为1,①中(A 1A →+A 1D 1→+A 1B 1→)2=A 1C →2=3A 1B 1→2=3,故①正确;②中A 1B 1→-A 1A →=9.如图所示,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,FA =FE ,∠AEF =45°.(1)求证:EF ⊥平面BCE ;(2)设线段CD ,AE 的中点分别为点P ,M ,求证:PM ∥平面BCE .证明 因为△ABE 是等腰直角三角形,AB =AE ,所以AE ⊥AB ,因为平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD =AB .所以AE ⊥平面ABCD ,所以AE ⊥AD ,即AD ,AB ,AE 两两垂直,建立如图所示的空间直角坐标系.设AB =1,则AD =AE =1.(1)A (0,0,0),B (0,1,0),D (1,0,0),E (0,0,1),C (1,1,0),因为FA =FE ,∠AEF =45°,所以∠AFE =90°,(2)M ⎝⎛⎭⎪⎫0,0,12,P (1,12,0), 从而PM →=(-1,-12,12), 于是PM →·EF →=⎝⎛⎭⎪⎫-1,-12,12·⎝ ⎛⎭⎪⎫0,-12,-12 =0+14-14=0. 所以PM ⊥EF ,又EF ⊥平面BCE ,直线PM 不在平面BCE 内,故PM ∥平面BCE .10.如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC =BC =BD =2AE =2,点M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求平面EMC 与平面BCD 所成的锐二面角的余弦值.则M (0,0,0),C (0,2,0),B (2,0,0),D (2,0,2),E (-2,0,1),∴ME →=(-2,0,1),MC →=(0,2,0),BD →=(0,0,2),BC →=(-2,2,0),设平面EMC 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·ME →=0,m ·MC →=0, 即⎩⎨⎧ -2x 1+z 1=0,2y 1=0,6 6.∴平面EMC与平面BCD所成的锐二面角的余弦值为。