MATLAB的单闭环转速负反馈直流调速系统仿真
- 格式:doc
- 大小:1.47 MB
- 文档页数:19
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅T e 60600.132 1.262π2πK K ==⨯≈ T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
目录目录 ............................................................................................................................................................... - 1 -1 绪论 ......................................................................................................................................................... - 2 -1.1 直流调速系统概述................................................................................................................... - 2 -1.2 MATLAB简介 ......................................................................................................................... - 3 -2 直流电动机的降压调速.......................................................................................................................... - 4 -2.1 直流电动机构成......................................................................................................................... - 4 -2.2 直流电机励磁方式................................................................................................................... - 4 -2.3 直流电动机工作原理............................................................................................................... - 4 -2.4 直流电动机的降压调速........................................................................................................... - 5 -3 单闭环直流调速系统 ............................................................................................................................. - 6 -3.1 V-M系统简介 .......................................................................................................................... - 6 -3.2 三相桥式全控整流电路........................................................................................................... - 6 -3.3 闭环调速系统的组成............................................................................................................... - 7 -4 电路设计和仿真 ..................................................................................................................................... - 8 -4.1 电路原理 .................................................................................................................................. - 8 -4.2 系统的建模和参数设置........................................................................................................... - 9 -4.3 仿真结果 ................................................................................................................................ - 17 -结论 ......................................................................................................................................................... - 18 -小组分工 ..................................................................................................................................................... - 18 -附录 ............................................................................................................................................................. - 19 -1 绪论直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切割机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的使用。
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
MU d+I dGTU cE +--UCR图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
基于MATLAB的单闭环转速负反馈直流调速系统仿真一、系统原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U,用作控制整流桥的“触发电路”,触Ct发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
31图1-1 转速单闭环系统原理图二、系统仿真1、系统的建模和模型仿真参数设置(1)6脉冲同步触发器子系统构建脉冲同步触发器2-1 图6326脉冲同步触发器模型构建是通过SimPowerSystems——Extra Library——Control Blocks——Synchronized 6-Pulse Generator来实现。
参数设置如下:三相线电压模型构建是通过SinPowerSystems——Measurements——V oltage Measurement来实现。
三个连接端口在SinPowerSystems——Elements——Connection Port在Simulink——Sources——In1找出U和In2 ct5的端口数改为Uct33In2则改为434找出元件后就可以按图2-1连线了,注意Vab、Vbc、Vca是呈三角形连接的。
转速反馈闭环调速系统的仿真该系统采用的是单闭环系统,通过把转速作为系统的被调节量,检测和纠正误差,有效地抑制直至消除扰动造成的影响。
各环节参数如书P50 2.6所示。
1.仿真模型的建立比例积分控制的无静差直流调速系统的仿真模型如下:2.调节器参数的调整为了清晰地观测仿真结果,把仿真时间10.0s 修改为0.6s 。
进入MATLAB,并打开SIMULINK 模块浏览器窗口,建立一个新的模型,并复制入相应模块,修改模块的参数。
在控制系统中设置调解器是为了改善系统的静、动态性能。
在采用了PI 调节器之后,构成的是无静差调速系统。
通过改变PI 调节器的参数,可以得到转速响应的超调量不一样、调节时间也不一样的响应曲线。
改变PI 参数Kp,τ1,保存并重新进行仿真过程。
如图1、2所示为暂定调节器参数为56.0=p K 、43.111=τ时的仿真结果:图1电枢电流随时间的变化图2电机转速随时间的变化由图1可知电流的最大值为230A 左右,显然不满足实际要求,后面需对此进行处理,采用带电流截止负反馈环节的直流调速系统。
由图2的scope 输出结果可以得出该控制系统的最大超调量M p 、上升时间r t ,调整时间s t ,取值分别为:M p =108r/min,r t =0.12s,s t =0.28s(估计值)改变PI 调节器的参数,可以得到转速响应的超调量不一样、调节时间不一样的响应曲线。
如图3所示为调节器参数是Kp=0.25,31=τ的仿真结果图,可以看出系统转速的响应无超调,但调节时间很长。
图3无超调的仿真结果如图4所示为调节器参数是Kp=0.8,151=τ的仿真结果图,可以看出系统转速的响应超调较大,但快速性较好。
图4超调量较大的仿真结果3.带电流负反馈的转速反馈控制直流调速系统仿真采用以下结构实现电流截止负反馈环节中的二极管功能:当输入小于0时,输出为0;当输入大于0时,输出等于输入。
根据电机的额定参数:A 55I N =。
一,转速反馈控制直流调速系统的matlab仿真1,基本原理:根据自动控制原理,将系统的被调节量作为反馈量引入系统,与给定量进行比较,用比较后的偏差值对系统进行控制,可以有效地抑制甚至消除扰动的影响,而维持被调节量很少变化或不变,这就是反馈控制的基本作用。
在负反馈基础上的“检查误差,用以纠正误差”这一原理组成的系统,其输出量反馈的传递途径构成一个闭环回路,因此被称作闭环控制系统。
在直流系统中,被调节量是转速,所构成的是转速反馈控制的直流调速系统。
2,下图是转速负反馈闭环调速系统动态结构框图各个环节的参数如下:直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电机电动势常数C e=0.192V·min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数Ks=44,滞后时间常数Ts=0.00167。
电枢回路总电阻R=1Ω,电枢回路电磁时间常数Tl=0.00167s,电力拖动系统机电时间常数Tm=0.075s。
转速反馈系数α=0.01 V·min/r。
对应的额定电压U n*=10V。
在matlab的simulink里面的仿真框图如下其中PI调节器的值暂定为Kp=0.56,1/τ=11.43。
3,仿真模型的建立:进入matlab,单击命令窗口工具栏的simulink图标,打开simulink模块浏览器窗口,如下图所示:打开模型编辑器窗口,双击所需子模块库的图标,则可以打开它,用鼠标左键选中所需的子模块,拖入模型编辑窗口。
要改变模块的参数双击模块图案即可(各模块的参数图案)。
加法器模块对话框Gain模块对话框把各个模块连接起来并按照上面给定的电机参数修改各个模块相应的参数,可以得到如下的比例积分的无静差直流调速系统的仿真框图:4,仿真后的结果及其分析:其中输出scope1中可以看出超调和上升时间等。
改变PI调节器的参数,并在仿真的曲线中得到最大的超调级调整时间,相互间进行比较,如下表所示:参照以上表格中的数据分析可知,改变PI调节器的参数,可以得到快速响应的超调量不一样,调节时间不一样的响应曲线。
带电流截止负反馈转速单闭环直流调速系统建模与仿真2015年4月目录一、设计参数 (1)二、设计背景 (1)2.1问题的提出 (1)2.2解决办法 (1)三、带电流截止负反馈闭环直流调速系统 (2)3.1总原理图 (2)3.2电流截止反馈环节 (2)3.3带电流截止负反馈闭环直流调速系统结构框图和静特性 (3)四、参数设计 (5)4.1基本参数的计算 (5)4.2判别系统稳定性 (6)4.3PI调节器的设计 (7)4.4取样电阻的选择 (10)五、Matlab建模与仿真 (10)5.1带P I调节器的闭环直流调速系统 (10)5.2加入电流截止负反馈 (11)六、波形分析及结论 (16)6.1没有电流截止负反馈 (16)6.2加上电流截止负反馈 (16)6.3结论 (16)一、设计参数电动机:额定数据为3kW P N =,220V U N =,17.5A I N =,1500r/min n N =,电枢电阻Ω=1.2R a ,22m 3.53N GD ⋅=;晶闸管触发整流装置:三相桥式可控整流电路,整流变压器Y/Y 联结,二次线电压230V U 2l =,二次线电压电压放大系数44K s =;V-M 系统电枢回路总电阻2.8Ω;要求:生产机械要求调速范围10D =,静差率2%S ≤,21A I 2.1N ==dcr I ,A I I N dbl 3177.1==,10VU *n =二、设计背景2.1问题的提出众所周知,直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。
采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的1+K 倍。
这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。
单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》1引言调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。
电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。
1.1直流调速系统的概述由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
就目前来看,直流调速系统仍然是自动调速系统的主要形式。
在我国许多工业部门,如海洋钻探、纺织、轧钢、矿山、采掘、金属加工、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
随着GTO晶闸管、GTR、P-MOSFET、IGBT和MCT等全控型功率器件的问世,这些有自断能力的器件逐步取代了原来普通晶闸管系统所必须的换向电路,简化了电路的结构,提高了效率和工作频率,降低了噪声,缩小了电力电子装置的体积和重量。
谐波成分大、功率因素差的相控变流器逐步被斩波器或脉冲宽度调制器所代替,明显的扩大了电动机控制的调速范围,提高了调速精度,改善了快速性、效率和功率因素。
PWM电源终将取代晶闸管相控式可控功率电源,成为电源的主流。
随着信息、控制与系统学科以及电力电子的发展,电力拖动系统获得了迅猛发展,从旋转交流机组到水银整流器静止交流装置、晶闸管整流装置,再到众多集成电力模块。
目前完全数字化的控制装置已成功应用于生产,以微机作为控制系统的核心部件,并具有控制、检测、监视、故障诊断及故障处理等多功能电气传动系统正处在形成和不断完善之中。
1.2本章小结本章介绍了直流调速系统的研究前景及其优点。
基于MATLAB的单闭环转速负反馈直流调速系统仿真
一、系统原理
为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
图1-1 转速单闭环系统原理图
二、系统仿真
1、系统的建模和模型仿真参数设置
(1)6脉冲同步触发器子系统构建
图2-1 6脉冲同步触发器
6脉冲同步触发器模型构建是通过SinPowerSystems——Extra Library——Control Blocks——Synchronized 6-Pulse Generator来实现。
参数设置如下:
三相线电压模型构建是通过SinPowerSystems——Measurements——Voltage Measurement来实现。
三个连接端口在SinPowerSystems——Elements——Connection Port
在Simulink——Sources——In1找出U ct和In2
Uct的端口数改为5
In2则改为4
找出元件后就可以按图2-1连线了,注意Vab、Vbc、Vca是呈三角形连接的。
接好线后,我们就开始建立6脉冲同步触发器子系统封装
首先,按Ctrl+A全选,然后单击Edit——Create Subsystem,就建好了子系统。
(2)主电路的建模和参数设置
单闭环转速负反馈直流调速系统的仿真模型如下:
图2-2 单闭环转速负反馈直流调速系统
新建一个Model,把6脉冲同步触发器子系统复制到新文件中。
找出4个常数模块:Simulink——Sources——Constant。
在Constant Value分别设为120、-180、50、0。
找出2个加法连接器:Simulink——Math Operations——Sum 分别设置为
找出2个比例环节:Simulink——Math Operations——Gain 分别设为
找出限幅器:Simulink——Commonly Used Blocks——
Saturation
设置如下:
找出三个交流电压源:SinPowerSystems——Electrical Sources——AC Voltage
Source
分别设置为:
找接地:SinPowerSystems——Elements——Ground
找出晶闸管整流桥和二极管:SinPowerSystems——Power Electronics——
Universal Bridge
晶闸管整流桥设置如下:
二极管设置如下:
找出一个平波电抗器:SinPowerSystems——Elements——Series RLC Branch 参数设置如下:
找出直流电动机:SinPowerSystems——Machines——DC
Machine
参数设置如下:
找励磁电源:SinPowerSystems——Electrical Sources——DC Voltage Sources电压设为220V
找出输出端口:Simulink——Sinks——Out1
找出示波器:Simulink——Sinks——Scope
示波器设置如下:
找出两个连接器:Simulink——Signal Routing——Demux设为4个
输出。
Simulink——Signal Routing——Mux设为3个输入。
器件全部找出来后,就可按图2-2连线。
连好线后,我们来设置整个模型的参数:
设置好后,点击运行,查看示波器,波形如下图所示:通过命令窗口输入plot(tout,yout)
比较波形:。