转速负反馈单闭环直流调速系统.
- 格式:ppt
- 大小:1.40 MB
- 文档页数:130
JIU JIANG UNIVERSITY电力电子技术课程设计题目转速负反馈单闭环有差直流调速系统院系电子工程学院专业自动化姓名王强年级电A113201(13)指导教师张波2014年 6 月电力电子技术课程设计摘要运动控制系统中应用最普遍的是自动调速系统。
自动调速系统主要包括直流调速系统和交流调速系统。
在高性能的拖动技术领域中,相当长时间内基本采用直流电力拖动系统。
直流调速是指人为地或自动地改变直流电动机的转速,已满足工作机械的要求。
从机械特性上看就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和负载机械特性的的交点,使电动机的稳定运转速度发生变化。
本文以直流电动机为对象,对转速负反馈有差直流调速系统在单闭环控制下的情形,进行了深入的分析研究,并用计算机仿真工具MATLAB的Simulink工具箱对系统模型进行了仿真研究。
关键词:直流电机调速;单闭环;MATLAB仿真目录引言 (1)1 设计任务及要求 (2)1.1 设计任务 (2)1.2 设计要求 (2)2 设计方案论证 (3)3 设计电路的原理分析 (4)3.1 单闭环控制的直流调速系统的组成 (4)3.2 转速单闭环直流电机调速系统的静态分析 (5)3.3 反馈控制单闭环直流调速系统的动态分析 (7)3.4 转速负反馈单闭环有差直流调速系统原理 (8)4 转速负反馈单闭环有差直流调速系统的仿真模型 (9)4.1 转速负反馈单闭环有差直流调速系统的建模 (9)4.2 仿真模型使用模块提取的路径及其参数设置 (9)5 转速负反馈单闭环有差直流调速系统的仿真及分析 (11)5.1 转速负反馈单闭环有差直流调速系统的仿真 (11)5.2 转速负反馈单闭环有差直流调速系统的仿真结果分析 (11)结论 (12)参考文献 (13)转速负反馈单闭环有差直流调速系统引言三十多年来,直流电机调速控制经历了重大的变革。
首先实现了整流器的更新换代,以三相整流桥等整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。
0实验一:转速负反馈闭环调速系统仿真框图及参数实验一:转速负反馈闭环调速系统仿真框图及参数转速负反馈闭环调速系统系统仿真框图及参数(sI dL- * n(s) ) (s) U n+ + + + - + -,图一比例积分控制的直流调速系统的仿真框图图一中是转速负反馈闭环调速系统的仿真框图,由框图中可以看出:1、该系统是采用PI调节器进行调节的,PI调节器的传递函数如下式所示:其中,是比例系数,积分系数=。
2、该系统采用的是单闭环系统,通过把转速作为系统的被调节量,检测误差,纠正误差,有效地抑制直至消除扰动造成的影响。
各环节参数如下:直流电动机:额定电压U= 220V,额定电流,额定转速,N电动机电动势系数。
假定晶闸管整流装置输出电流可逆,装置的放大系数,滞后时间常数0.00167s。
电枢回路总电阻R = 1.0,,电枢回路电磁时间常数,电力拖动系统机电时间常数。
转速反馈系数, , ,,,,。
对应额定转速时的给定电压。
转速负反馈闭环调速系统的仿真1. 仿真模型的建立比例积分控制的无静差直流调速系统的仿真模型进入MATLAB,并打开SIMULINK模块浏览器窗口,建立一个新的模型,并复制入相应模块,修改模块的参数.当其中PI调节器的至暂定为,1/, = 11.43时,把从10.0修改为0.6后控制参数的仿真结果:图1 电枢电流随时间变化的规律图2电机转速随时间变化的规律由图1可知电流的最大值为230A左右,显然不满足实际要求,故后面需对此进行处理,采用带电流截止负反馈环节的直流调速系统。
其中,由图2 scope输出结果中可以得出该控制系统的最大超调量M、上升时间 ,调p整时间,取值分别为:M= 108r/min, = 0.12s, = 0.28s(估计值) p2. PI调节器参数的调整改变PI调节器的参数,并在启动仿真,分别从仿真曲线中得到的最大超调量及调整时间,相互间进行比较,如下表所示最大超调量比例系数积分系数调整时间(s) M(r/min) p0.25 3 0 >0.6 0.56 3 0 >0.6 0.56 11.43 108 0.28 0.8 11.43 63 0.28 0.8 15 152 0.23由表中可以看出,改变PI调节器的参数,可以得到转速响应的超调量不一样、调节时间不一样的响应曲线。
带电流截止负反馈的转速单闭环可逆调速系统设计心得在设计带有电流截止负反馈的转速单闭环可逆调速系统时,我获得了一些有价值的心得。
这种系统通常用于电机控制,通过闭环反馈来实现对电机转速的精确控制。
首先,设计一个合适的电流截止负反馈环路非常重要。
电流截止是一种常用的控制策略,通过将电流与设定值进行比较,然后根据比较结果调整控制信号来实现对转速的控制。
在设计负反馈环路时,需要注意选择合适的比例和积分增益来实现稳定的控制。
其次,选择合适的转速控制策略也是至关重要的。
常见的转速控制策略包括PID 控制、模糊控制和神经网络控制等。
根据实际需求和系统特点,选择最适合的控制策略能够提高系统的控制性能和稳定性。
此外,设计合适的传感器和测量电路也是设计可逆调速系统的重要一环。
转速传感器的准确性对于精确控制转速至关重要。
在选择传感器时,需要考虑其测量范围、精度和响应速度等因素。
最后,合理设计控制回路,并对系统进行充分的仿真和实验。
通过仿真和实验可以验证设计的合理性和系统的性能。
在仿真和实验中,可以对系统进行各种工况的测试,以确保系统在各种条件下都能稳定工作。
总结起来,设计带有电流截止负反馈的转速单闭环可逆调速系统需要考虑多个因素,包括负反馈环路设计、转速控制策略选择、传感器选择和系统仿真与实验。
通过综合考虑这些因素,可以设计出高性能和稳定的转速控制系统。
实验八带电流截止负反馈的转速单闭环直流调速系统一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试方法及电流截止负反馈的整定。
(3)通过实验,加深理解负反馈原理及转速负反馈电流截止负反馈的在调速系统中的作用。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U Ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
带电流截至负反馈的转速单闭环直流调速系统概要概述直流调速系统是现代工业中常见的一种控制系统,其主要作用是通过控制电机的转速来调节其输出的功率。
转速单闭环直流调速系统是其中一种常见的控制系统,它采用了带电流截至负反馈的技术,可以有效地提高系统的稳定性和响应速度。
系统结构转速单闭环直流调速系统主要由三部分组成:电机控制电路、转速测量电路和控制器。
其中电机控制电路用于控制电机的转速,转速测量电路用于测量电机的转速,控制器用于计算误差并发送控制信号到电机控制电路。
具体来说,电机控制电路包括电源、电机以及功率调节器等组件。
电源提供电流给电机,功率调节器则可以控制电流的大小和方向,从而实现对电机转速的控制。
转速测量电路主要用于测量电机的转速,它通常包括一些传感器和信号处理电路。
传感器可以检测电机转子的位置,信号处理电路则将传感器输出的信号转换为脉冲信号,供控制器使用。
控制器是这个系统的核心部件,它负责计算误差并发送控制信号到电机控制电路。
具体来说,控制器可以将目标转速和实际转速之间的差值作为误差,通过算法计算出电机电流的大小和方向,从而实现对电机转速的控制。
技术应用转速单闭环直流调速系统广泛应用于各种需要精确控制电机转速的场合,比如机床、风扇、电动机车、水泵等等。
用转速单闭环直流调速系统可以实现对电机的精确的控制,提高设备的工作效率和稳定性。
此外,带电流截至负反馈的技术也可以应用于其他类型的控制系统中,比如温度控制系统、光照控制系统等等。
它的优点是可以提高系统的稳定性和响应速度,从而提高设备的性能和可靠性。
转速单闭环直流调速系统是一种常见的控制系统,它采用了带电流截至负反馈的技术,可以实现对电机转速的精确控制。
该系统结构简单,应用广泛,可用于机床、风扇、电动机车、水泵等设备的控制。
此外,该技术也可以应用于其他类型的控制系统中,提高设备的性能和可靠性。