《偏微分方程数值解》课程大纲
- 格式:docx
- 大小:14.06 KB
- 文档页数:3
《偏微分方程》课程大纲一、课程简介教学目标:“偏微分方程”是重要的数学基础课程,它在数学的其它分支和自然科学与工程技术中的广泛应用是众所周知的。
本课程将尽可能地结合物理背景,系统地对几类典型方程数学结构、求解方法、解的性质以及物理意义进行详细阐述,为学生日后的学习和工作打下坚实的基础,提供强有力的工具,并为进一步了解和应用现代偏微分方程的有关内容提供重要帮助。
主要内容:1. 了解几类典型方程及其定解条件的物理背景2.掌握方程的分类及其化简方法3. 熟练掌握各类方程的求解方法(包括具有普适性的方法,如分离变量法,Fourier变换法和Green函数法等,以及针对某类方程的特定方法,如特征线法)4. 会用一些基本方法(如能量积分法、极值原理等)讨论解的性质并掌握解的重要性质二、教学内容(其中带*的部分可能随堂调整)第一章引论主要内容:1、偏微分方程简介a)偏微分方程的历史、现状和用途b)什么是偏微分方程?介绍有关偏微分方程基本概念和研究内容c)例子:简单而多样的例子帮助学生初步了解偏微分方程2、二阶线性偏微分方程的分类和特征理论a)两个自变量的二阶线性偏微分方程的分类与化简,椭圆型、双曲型和抛物型的标准形式与典型例子,混合型方程b)多个自变量的二阶线性偏微分方程方程的分类及其例子c)二阶线性方程的特征理论*3、四类典型方程的数学模型:包括波动方程、热传导方程、调和方程、和一阶方程4、其他预备知识:线性方程的叠加原理、Sturm-Liouville原理*重点与难点:通过化标准型将二阶方程进行分类、特征的概念(这是偏微分方程中最基本也是最重要的概念)、各类方程及其定解条件的物理意义第二章波动方程主要内容:1、弦振动方程Cauchy问题的存在性:D’Alembert求解公式,传播波,依赖区域、决定区域和影响区域,特征线法(行波法)的其他应用和例子,Duhamel齐次化原理及其物理解释2、弦振动方程初边值问题的存在性:分离变量法求解齐次问题及解的存在性讨论,分离变量法求解的物理意义,多种边界条件的例子,非齐次方程的情形,非齐次边界条件的情形,高维波动方程分离变量法的例子3、高维波动方程Cauchy问题的求解:三维波动方程的球平均法,二维波动方程的降维法4、波的传播与衰减:依赖区域、决定区域和影响区域,Huygens原理与波的弥散,波动方程解的长时间性态5、能量不等式与唯一性和稳定性:初边值问题解的唯一性和稳定性,Cauchy问题解的唯一性和稳定性重点与难点:针对于波动方程:特征线与特征锥、特征线方法、波的有限传播速度;适用于各种方程的普遍方法:能量积分方法、分离变量法第三章热传导方程主要内容:1、求解初边值问题的分离变量法:一维情形,高维的例子2、Cauchy问题解的存在性:Fourier变换及其基本性质,用Fourier变换法求解Cauchy问题及解的存在性讨论,Fourier变换法的其他应用3、极值原理与唯一性和稳定性:有界区域的极值原理,无界区域的极值原理,初边值问题解的唯一性和稳定性,Cauchy问题解的唯一性和稳定性4、解的渐近性态:初边值问题解的渐近性态,Cauchy问题解的渐近性态重点与难点:Fourier变换方法、极值原理、关注与波动方程的区别第四章调和方程主要内容:1、调和函数的基本性质:Green公式,Neumann问题解的自由度与可解性条件,调和方程的基本解,变分原理、基本积分公式,平均值定理,极值原理、边值问题解的唯一性和稳定性2、Green函数:定义和性质,用静电源像法求一些特殊区域的Green函数,一般单连通区域的Green函数,用Green函数法求解调和方程与Poisson方程3、调和函数的进一步性质―――Harnack定理,可去奇点定律,解析性定理、强极值原理、Neumann边值问题解的唯一性。
《偏微分⽅程》课程⼤纲《偏微分⽅程》课程⼤纲⼀、课程简介教学⽬标:“偏微分⽅程”是重要的数学基础课程,它在数学的其它分⽀和⾃然科学与⼯程技术中的⼴泛应⽤是众所周知的。
本课程将尽可能地结合物理背景,系统地对⼏类典型⽅程数学结构、求解⽅法、解的性质以及物理意义进⾏详细阐述,为学⽣⽇后的学习和⼯作打下坚实的基础,提供强有⼒的⼯具,并为进⼀步了解和应⽤现代偏微分⽅程的有关内容提供重要帮助。
主要内容:1. 了解⼏类典型⽅程及其定解条件的物理背景2.掌握⽅程的分类及其化简⽅法3. 熟练掌握各类⽅程的求解⽅法(包括具有普适性的⽅法,如分离变量法,Fourier变换法和Green函数法等,以及针对某类⽅程的特定⽅法,如特征线法)4. 会⽤⼀些基本⽅法(如能量积分法、极值原理等)讨论解的性质并掌握解的重要性质⼆、教学内容(其中带*的部分可能随堂调整)第⼀章引论主要内容:1、偏微分⽅程简介a)偏微分⽅程的历史、现状和⽤途b)什么是偏微分⽅程?介绍有关偏微分⽅程基本概念和研究内容c)例⼦:简单⽽多样的例⼦帮助学⽣初步了解偏微分⽅程2、⼆阶线性偏微分⽅程的分类和特征理论a)两个⾃变量的⼆阶线性偏微分⽅程的分类与化简,椭圆型、双曲型和抛物型的标准形式与典型例⼦,混合型⽅程b)多个⾃变量的⼆阶线性偏微分⽅程⽅程的分类及其例⼦c)⼆阶线性⽅程的特征理论*3、四类典型⽅程的数学模型:包括波动⽅程、热传导⽅程、调和⽅程、和⼀阶⽅程4、其他预备知识:线性⽅程的叠加原理、Sturm-Liouville原理*重点与难点:通过化标准型将⼆阶⽅程进⾏分类、特征的概念(这是偏微分⽅程中最基本也是最重要的概念)、各类⽅程及其定解条件的物理意义第⼆章波动⽅程主要内容:1、弦振动⽅程Cauchy问题的存在性:D’Alembert求解公式,传播波,依赖区域、决定区域和影响区域,特征线法(⾏波法)的其他应⽤和例⼦,Duhamel齐次化原理及其物理解释2、弦振动⽅程初边值问题的存在性:分离变量法求解齐次问题及解的存在性讨论,分离变量法求解的物理意义,多种边界条件的例⼦,⾮齐次⽅程的情形,⾮齐次边界条件的情形,⾼维波动⽅程分离变量法的例⼦3、⾼维波动⽅程Cauchy问题的求解:三维波动⽅程的球平均法,⼆维波动⽅程的降维法4、波的传播与衰减:依赖区域、决定区域和影响区域,Huygens原理与波的弥散,波动⽅程解的长时间性态5、能量不等式与唯⼀性和稳定性:初边值问题解的唯⼀性和稳定性,Cauchy问题解的唯⼀性和稳定性重点与难点:针对于波动⽅程:特征线与特征锥、特征线⽅法、波的有限传播速度;适⽤于各种⽅程的普遍⽅法:能量积分⽅法、分离变量法第三章热传导⽅程主要内容:1、求解初边值问题的分离变量法:⼀维情形,⾼维的例⼦2、Cauchy问题解的存在性:Fourier变换及其基本性质,⽤Fourier变换法求解Cauchy 问题及解的存在性讨论,Fourier变换法的其他应⽤3、极值原理与唯⼀性和稳定性:有界区域的极值原理,⽆界区域的极值原理,初边值问题解的唯⼀性和稳定性,Cauchy问题解的唯⼀性和稳定性4、解的渐近性态:初边值问题解的渐近性态,Cauchy问题解的渐近性态重点与难点:Fourier变换⽅法、极值原理、关注与波动⽅程的区别第四章调和⽅程主要内容:1、调和函数的基本性质:Green公式,Neumann问题解的⾃由度与可解性条件,调和⽅程的基本解,变分原理、基本积分公式,平均值定理,极值原理、边值问题解的唯⼀性和稳定性2、Green函数:定义和性质,⽤静电源像法求⼀些特殊区域的Green函数,⼀般单连通区域的Green函数,⽤Green函数法求解调和⽅程与Poisson⽅程3、调和函数的进⼀步性质―――Harnack定理,可去奇点定律,解析性定理、强极值原理、Neumann边值问题解的唯⼀性。
中国海洋大学本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:本课程介绍数值求解偏微分方程的基本方法及相关的理论基础。
本课程针对数学类专业高年级(三年级)本科生开设。
课程基本内容包括:有限差分方法、差分格式的稳定性、收敛性分析;变分原理,Galerkin有限元方法等。
通过对模型问题的基本数值方法进行分析,阐明构造数值方法的基本思想和技巧。
通过本课程学习,使学生了解并掌握数值求解偏微分方程的基本思想、基本概念和基本理论(数值格式的相容性、稳定性、收敛性及误差估计等),能够运用算法语言对所学数值方法编制程序在计算机上运行实施并对数值结果进行分析。
培养学生理论联系实际,解决实际问题的能力和兴趣。
2.设计思路:偏微分方程是应用数学的核心内容,在其他科学、技术领域具有广泛深入的应用。
掌握偏微分方程的基础理论及求解方法是数学类专业本科生培养的基本要求。
本课程是在数学物理方程课程基础上开设的延展应用型课程,是一门数值分析理论与实践应用高度融合的专业课。
课程引导学生通过数值方法探讨和理解应用数学工具解决实际- 6 -问题的途径及理论分析框架。
学习本课程需要学生掌握了“数学分析”、“数学物理方程”、“数值分析”及“泛函分析”的核心基本内容。
课程内容安排分为有限差分方法和有限元方法两个单元模块,这是目前应用最广泛、理论发展最完善的两类数值方法,两者既有关联又有本质区别,能够体现偏微分方程数值解法的基本特征。
首先介绍有限差分方法。
有限差分方法是近似求解偏微分方程的应用最广泛的数值方法,以对连续的“导数(微分)”进行离散的“差分”近似为基本出发点,利用Fourier 分析及数值分析的基本理论,讨论椭圆、抛物、双曲等三类典型偏微分方程近似求解方法及近似方法的数学理论分析。
有限元方法是20世纪中期发展起来的基于变分原理的数值方法,具有更直接的物理背景含义,因而受到力学、工程等应用领域广泛的关注和应用。
《偏微分方程数值解》教学大纲
一.课程的性质、教育目标及任务:
偏微分方程数值解法在数值分析中占有重要地位,在各个科技领域的应用日渐广泛。
通过本课程的学习,使学生能了解偏微分方程数值解的最基础的知识和方法,确切地理解基本概念,掌握和正确使用两类主要方法。
二.教学内容及基本要求:
(1)弄清有限差分法的基本概念和各种差分格式。
(2)掌握双曲型,抛物型、椭圆型方程的差分方法。
(3)理解数理方程的变分原理,掌握变分问题的近似计算法。
(4)掌握有限元离散方法的原理及应用。
三.作业、辅导答疑等教学环节要求:
1.作业量:每章5--6大题,共30--40题。
2.辅导答疑:1/3总课时。
四.学时分配及说明:。
偏微分方程数值解讲义教学设计1. 课程简介本课程是针对大学数学及计算机专业的高年级本科生或研究生开设的,旨在介绍偏微分方程数值解方法,包括有限差分法、有限元法和谱方法等。
本课程的学习目标是掌握偏微分方程数值解的基础理论和常用方法,以及了解数值解的数学原理和应用场景,并能够扩展应用所学知识解决相关实际问题。
2. 教学内容2.1 引言•偏微分方程的概念、分类和基本理论;•数值解的概念和分类,数值解的误差理论。
2.2 有限差分法•一维抛物方程、波动方程、椭圆方程的有限差分格式;•非线性偏微分方程的数值求解;•高维问题的数值求解。
2.3 有限元法•一维线性抛物方程、波动方程、椭圆方程的有限元求解方法;•二维和三维问题的有限元求解方法;•有限元法的加权残差方法和变分原理。
2.4 谱方法•调和方程的分离变量方法和Fourier级数解法;•Laplace方程的Fourier级数解法和离散正交函数解法;•泊松方程的Fourier级数解法和离散正交函数解法。
3. 教学手段3.1 讲课本课程采用讲课和练习相结合的方式,通过讲解理论知识和数值计算实例,并基于MATLAB或Python等数值计算软件进行演示。
3.2 练习结合课程中的实例,进行数值计算作业和课程项目的设计,以提高学生的理论知识和计算能力。
4. 教材教材推荐:•Numerical Solution of Partial Differential Equations: Finite Difference Methods by G. D. Smith •Finite Element Method: A Practical Course by C. S.Chen5. 教学评估学生的教学成绩考核由以下三部分组成:•期中考试(占成绩的30%);•期末考试(占成绩的50%);•课程设计作业(占成绩的20%)。
6. 教学进度内容讲课时间引言2课时有限差分法(一)6课时有限差分法(二)6课时有限差分法(三)4课时有限元法(一)6课时有限元法(二)6课时有限元法(三)4课时谱方法6课时课程设计作业4课时或更多7. 总结本文介绍了一个偏微分方程数值解讲义的教学设计,包括课程简介、教学内容、教学手段、教材、教学评估和教学进度等方面的内容。
《偏微分方程数值解》课程教学大纲Numerical Solution of Partial Differential Equation课程代码: 课程性质:专业基础理论课/选修适用专业:信息计算开课学期:7总学时数:48总学分数:3编写年月:2003年3月修订年月:2007年7月执笔:王琦一、课程的性质和目的《偏微分方程数值解法》是计算数学专业的一门重要专业基础课。
它不仅对学生今后从事科研具有居高临下的指导作用,而且对于学习其它后继课程和解决一些实际问题都是一门重要的工具,同时对于训练思维能力起着很大作用。
本大纲是根据教育改革发展和面向二十一世纪高等数学专业课程设置和教学内容改革的要求,针对培养目标的需要进行设计的。
二、课程教学内容及学时分配第一章常微分方程初值问题10学时第二章变分原理8学时第三章椭圆型方程----有限差分法和有限元法10学时第四章离散方程的解法8学时第五章抛物型方程和双曲型方程12学时第一章常微分方程初值问题1.1 引论1.2 Euler方法和线形多步方法1.3 稳定性,收敛性和误差估计1.4 预估—校正算法1.5 Runge—Kutta方法第二章常微分方程初值问题2.1 二次函数的极值2.2 二阶椭圆边值问题2.3 Ritz方法第三章椭圆型方程----有限差分法和有限元法3.1 差分逼近的基本概念3.2 一维差分格式,矩形网和三角网差分格式3.3 极值定理3.4 解一维问题的线形元及误差估计3.5 解二维问题的矩形元和三角形元3.6 有限元方程3.7 收敛阶的估计第四章离散方程的解法4.1 离散方程的基本特征4.2 追赶法与迭代法4.3 超松弛法4.4 共轭斜量法第五章抛物型方程和双曲型方程5.1 稳定性与收敛性5.2 分离变量法5.3 差分格式的应用5.4 交替方向隐格式5.5 线形双曲型方程的差分逼近5.6 拟线形双曲型方程组5.7 基本定解问题和特征线法5.8 特征差分格式四、本课程与其它课程的联系与分工先修课程:数学分析,高等代数,常微分方程。