广东海洋大学近几年高数试卷
- 格式:doc
- 大小:13.27 MB
- 文档页数:35
广东海洋大学 2009— 2010 学年第二学期班级 :《 概率论与数理统计 》课程试题一.填空题(每题 3 分,共 45 分)1.从 1 到 2000 中任取 1 个数。
则取到的数能被6 整除但不能被 8 整除的概率为0.5 ”的概率为2”的概率为 2.在区间( 8, 9)上任取两个数,则“取到的两数之差的绝对值小于3.将一枚骰子独立地抛掷 3 次 , 则“ 3 次中至少有 2 次出现点数大于 ( 只姓名 :密列式,不计算)4.设甲袋中有 5 个红球和 2 个白球 , 乙袋中有 4 个红球和 3 个白球 , 从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,则最后取得红球的概率为5.小李忘了朋友家的电话号码的最后一位数,于是他只能随机拨号,则他第五次才能拨对电话号码的概率为X 2 , 则 P{ XD( X )}6.若 ~ 学号 :34x 00 x 1其它f xX 7.若 的密度函数为封, 则 F 0 .5 =x 1x 0 X 8.若 的分布函数为 F x0 x 1 , E (3 X 1) 则 x 1X (3 X )P{ XY}9.设随机变量X ~ b(3 , 0.4) ,且随机变量 Y,则 2试 题 共 6 页 10.已知 ( X ,Y) 的联合分布律为:1 2 Y线X 0 11/6 1/41/9 1/181/6 1/4则 P{ Y2 | X 1}加 白 纸 3 张E(3X2Y)X , Y 11.已知随机变量都服从 上的均匀分布 , 则 [0,4]414 42), 又设 ~ N (1, 12.已知总体 X , X ,X , X X 的样本,记 XX X 为来自总体 ,则1 2 3 4 i i 1X ~1 1 61 613.设 X 的一个简单随机样本, 若已知 X 13X 2X 3 kX 4 是X 1 , X 2 , X 3 , X 4 是来自总体k总体期望 E( X ) 的无偏估计量,则 2) ,取样本容量为 ~ N ( ,14. 设某种清漆干燥时间 X 9 的一样本, 得样本均值和方差分别为x 6 , s20.09 ,则 的置信水平为 90%的置信区间为( t (8) 1.86 )0.05 2 X 2 2X ~ N (0, 1) X 1 , X 2 , X 3 为取自总体X 15. 设 ( 设 ) 的样本 , 则1 ~2 XX3( 同时要写出分布的参数 )2cx y 0 ,0 x 1, 0 y 1, 设随机变量 ( X ,Y) 的概率密度为 二 . f ( x, y)其它(1) 未知常数c ; (4 求 分) ;(4 分 ) (2)P{ X Y 1 / 2} (3) 边缘密度函数 ;(8 分 ) (4 分 )f X ( x) 及 f Y ( y) X 与 Y 是否独立?并说明理由 判断 (4) 2cx y 0 ,0 x 1 , 0 y 1, 解 f ( x, y )其它1 1211f ( x, y )d dx cx ydyc / 6cP X 6 Y 2 1 / 2 1 1 / 2 P XYx 1 / 2 1/ 22P X P XY Y1 /2 1 / 26x ydy1 / 320319 / 320 0y0 0x0 11 2223 f X ( x)6 x ydy3x0 x 1f Y ( y)6 x ydx2 y 0y 1x 1 y 1f X ( x ) f Y ( y), 独立。
广东海洋题 号 — 二 三 四 五 六 七 八 九 十 总分 阅卷教师 各题分数 18 42 40 100 实得分数 学号:试题共5页加白纸3张GDOU-B-11-302 一・填空(3X6-18分) 1. _________________________________ 函数"丫)=疋7的拐点是 __________________________________________ ,3・设广(b x ) = x 2 (x > 1),贝[j f(x)二 ____________Y = 14. 曲线 在/ = 2处的切线方程为 .y = F5. 设①(x) = [sin tdt ,则 ①*(扌)= ____________ .丄6. 设/(E = (l + W,则广⑴等于 _____________ .二.计算题(7X6=42分)] 求 lim sm2x-2sinxD r 3课程号:xl 《高等数2.求不定积分]* —山.J sin xcosx3.己知晋是/⑴的原函数,求\xf \x\lx.4.设方程严一3"2尸_5 = 0确定函数y=y(x),求空.dx5.求f(x) = e x cosx的三阶麦克劳林公式.6.求由曲线y =加与直线y = Ina及y = Inb所围成图形的而积b> a >0.三.应用及证明题(10X4二40分)1.证明:当x>0时,1 + *>曲.2.若函数f(x)在(“,b)内具有二阶导函数,且f(x i) = f(x2) = f(x3)(a<x}<x2<x3</?),证明:在(和勺)内至少有一点,使得广'(<) = 0.3.当x为何值时,函数心)叮/力有极值.4.试确定"的值,使函数f(X)= \代"。
在(-S,+S)内连续. a+ x, x > 0。
广东海洋大学 2016 —— 2017学年第 1 学期 《 高等数学1 》课程试题 课程号: 19221101x1 □√ 考试 □√ A 卷 □√ 闭卷一. 填空题(3×8=24分) 1.设函数1sin ,0()cos ,0x x e x f x a x x ⎧⎪>=⎨⎪≤⎩在点0x =处连续,则a = . 2.1x =是函数ln ()1x f x x =-的第 类间断点 3.设()2x f x e -= ,则()()n f x = 4. 设2y x = ,则当1,0.1x dx == 时dy = 5. 曲线x y xe -=在()0,0处的切线方程为 6. 函数33y x x =-在[]0,2上的最小值为 7. 312111x dx x -++⎰= 8.曲线2y x =与曲线0,1y x ==所围的图形的面积为 二 . 计算题(6×5=30分) 1. 求20sin lim tan x x x x x →-班级:姓名: 学号:试题共4页加白纸2张密封线GDOU-B-11-3022.求 31lim 1xx x x →∞-⎛⎫ ⎪+⎝⎭3.设()sin 1x y e -=+,求dy4.设 sin cos x t y t t =⎧⎨=⎩,求22d ydx5. 设函数()y y x =是由方程2220y xy e +-=确定,求dy dx三 .计算下列各题(7×4=28分)1. (1x +⎰2.sin 2x xdx ⎰3.1-⎰.4.()2211dx x x +∞+⎰.四.(11分)1. 计算由曲线2y x =与直线0,1y x ==所围成的平面图形绕x 轴旋转一周所得旋转体的体积.2.求曲线21x y x=+的凹凸区间和拐点。
五.(7分)设()f x 在[]0,1上连续,在()0,1内可导,()10f =.证明:存在()0,1ξ∈,使()()0f f ξξξ'+=.。
广东海洋大学 2011 —— 2012 学年第二学期《经济数学》课程试题(评分标准)课程号: 19221105×2 √ 考试 √ A 卷 √ 闭卷 □ 考查 □ B 卷□ 开卷一、填空题(每小题3分, 共30分)1. ='⎰dx x f )(C x f +)(2. 函数)4ln(-+=y x y 的定义域为}4),{(>+y x y x3. 二阶齐次微分方程0158=+'+''y y y 的通解为 为任意常数)其中215231,(c c e c e c y x x --+=4. yx xyy x +-→→1lim10= 1.5. 设,2),(22y y x y x f -= 则yx Z∂∂∂2= 4xy .6. 设y x z +=22,则dy xdx dz +=4.7. 若区域D:122≤+y x ,则⎰⎰Ddxdy =π8.=⎰→xtdt x x 2sin lim1/2 .9. 微分方程 x e y 2='的通解是C e y x +=221. 10. ⎰∞+121dx x= 1 . 二、计算题(每小题6分, 共42 分)Cx x d x xdxx xdxx +-=-==⎰⎰⎰322cos 32cos cos 2sin cos 22sin cos .1 )1(41)2(21)ln (21ln 21ln .22122112211+=-=-==⎰⎰⎰e x e xdx x x dx x xdxx e e e e e320)331(2)3(33.3,6;2,1.3,33.3323261322261=-=--=+====-==++⎰⎰⎰t t t d t t dx x x t x t x t x t x dx x x当当则解:令4.设,,,1222y x v y x u v u z -=+=+-=而求xz ∂∂, y z ∂∂.分分分解:3)(2)(42-------------22212------+=-⋅=------∂∂⋅∂∂+∂⋅∂∂=∂∂y x y x x v x u x v v z dx u u z x z 分(分分6)252242--------+=--------+=-----∂∂⋅∂∂+∂∂⋅∂∂=∂∂x x vu y v v z y u u z y z5. 求过)11-3,,轴和点(y 的平面的方程. 解:因为平面过y 轴,故设平面方程为 Ax+Cz = 0. --------3分把点)11-3,,(代入平面方程得 C=-3A -----------------5分 所以,所求平面方程为:x-3z=0 -----------------6分6. 试求a 的值,使曲线ax y x x y =-=与2所围成的平面图形面积为29.解:联立方程组⎩⎨⎧=-=axy x x y 2,解得交点为(0,0)和),12a a a --(, -----1分 则有,)(29210dx ax x x a --=⎰-, ------------4分6)1()3121(31032a x x a a -=--=- -------------5分解得2-=a --------------6分 7.求由6333=-+++xyz z y x 所确定的函数)1,2,1(),(-=在点y x f z 的偏导数 .解:设6)(333-+++=xyz z y x x F ,则xy z F xz y F yz x F Z y x +=+=+=2223,3,3 ---------------------2分5133)1,2,1(22)1,2,1()1,2,1(-=++-=-=∂∂---xy z yz x F F x zZ x---------------------4分51133)1,2,1(22)1,2,1()1,2,1(-=++-=-=∂∂---xy z xz y F F y zZy ----------------------6分三、求微分方程 x e x y y x 2=-'的通解.(7分)解法一:方程整理得 x xe y xy =-'1----------------1分 这是一阶线性微分方程,x xe x Q xx P =-=)(,1)(,由公式法得 ------------2分分分分7)(6)(4)(11--------------+=--------------+=---------+⎰⎰=⎰⎰-C e x C dx e x C dx exe ey x x dxx xdxx(解法二:也可用常数变易法)四、计算二重积分 (8分)⎰⎰=Dxydxdy I ,其中D 是由直线1=+y x 及两坐标轴所围成的闭区域.解:平面区域D 可表为:x y x -≤≤≤≤10,10 ----------2分分分分分所以,8241)4322(216221421310432132101021010----------=+-=-----------+-=-------------=---------=⎰⎰⎰⎰--x x x dx x x x dx xy xydy dx I x x五、某工厂生产甲和乙两种产品,其销售量x 和y 分别是它们价格p 和q 的函数:x=32-2p, y=22- q ,又产品的总成本C 是销售量x, y 的函数73221),(22+++=y xy x y x C ,求取得最大利润时,两种产品的销售量和单价分别是多少?(8分)解:设.),(),(是收益函数是利润函数,y x R y x L 则 yq xp y x R +=),(,由q y p x -=-=22,232,------------------1分所以 y q xp -=-=22,216,------------------------2分故 ,22216)22()216(),(22y y x x y y x x y x R ++-=-+-= -------------3分 于是 73222216),(22---+-=-=xy y y x x C R y x L . ------------------5分y x L y x L y x 4222,2216--='--=' -----------------------6分令 ⎩⎨⎧='='00y xL L 解得唯一驻点(5,3).因为(5,3)是唯一驻点,故即为所求最大值点. -------- 7分 又 x =5时,p=13.5; y =3时, q =19.答:当销售量x=3, y =5,相应价格为p =13.5, q =19时销售利润最大. ---------8分六、设],[)(b a x f 在上连续,证明:⎰⎰=-+babadx x f dx x b a f )()(.(5分)⎰⎰⎰⎰==-=-+-+=babaa bb adxx f dt t f dt t f dx x b a f x b a t )()())(()(,则令证明:。
广东海洋大学 2009— 2010 学年第二学期班级 :《 概率论与数理统计 》课程试题一.填空题(每题 3 分,共 45 分)1.从 1 到 2000 中任取 1 个数。
则取到的数能被6 整除但不能被 8 整除的概率为0.5 ”的概率为2”的概率为 2.在区间( 8, 9)上任取两个数,则“取到的两数之差的绝对值小于3.将一枚骰子独立地抛掷 3 次 , 则“ 3 次中至少有 2 次出现点数大于 ( 只姓名 :密列式,不计算)4.设甲袋中有 5 个红球和 2 个白球 , 乙袋中有 4 个红球和 3 个白球 , 从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,则最后取得红球的概率为5.小李忘了朋友家的电话号码的最后一位数,于是他只能随机拨号,则他第五次才能拨对电话号码的概率为X 2 , 则 P{ XD( X )}6.若 ~ 学号 :34x 00 x 1其它f xX 7.若 的密度函数为封, 则 F 0 .5 =x 1x 0 X 8.若 的分布函数为 F x0 x 1 , E (3 X 1) 则 x 1X (3 X )P{ XY}9.设随机变量X ~ b(3 , 0.4) ,且随机变量 Y,则 2试 题 共 6 页 10.已知 ( X ,Y) 的联合分布律为:1 2 Y线X 0 11/6 1/41/9 1/181/6 1/4则 P{ Y2 | X 1}加 白 纸 3 张E(3X2Y)X , Y 11.已知随机变量都服从 上的均匀分布 , 则 [0,4]414 42), 又设 ~ N (1, 12.已知总体 X , X ,X , X X 的样本,记 XX X 为来自总体 ,则1 2 3 4 i i 1X ~1 1 61 613.设 X 的一个简单随机样本, 若已知 X 13X 2X 3 kX 4 是X 1 , X 2 , X 3 , X 4 是来自总体k总体期望 E( X ) 的无偏估计量,则 2) ,取样本容量为 ~ N ( ,14. 设某种清漆干燥时间 X 9 的一样本, 得样本均值和方差分别为x 6 , s20.09 ,则 的置信水平为 90%的置信区间为( t (8) 1.86 )0.05 2 X 2 2X ~ N (0, 1) X 1 , X 2 , X 3 为取自总体X 15. 设 ( 设 ) 的样本 , 则1 ~2 XX3( 同时要写出分布的参数 )2cx y 0 ,0 x 1, 0 y 1, 设随机变量 ( X ,Y) 的概率密度为 二 . f ( x, y)其它(1) 未知常数c ; (4 求 分) ;(4 分 ) (2)P{ X Y 1 / 2} (3) 边缘密度函数 ;(8 分 ) (4 分 )f X ( x) 及 f Y ( y) X 与 Y 是否独立?并说明理由 判断 (4) 2cx y 0 ,0 x 1 , 0 y 1, 解 f ( x, y )其它1 1211f ( x, y )d dx cx ydyc / 6cP X 6 Y 2 1 / 2 1 1 / 2 P XYx 1 / 2 1/ 22P X P XY Y1 /2 1 / 26x ydy1 / 320319 / 320 0y0 0x0 11 2223 f X ( x)6 x ydy3x0 x 1f Y ( y)6 x ydx2 y 0y 1x 1 y 1f X ( x ) f Y ( y), 独立。
广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:x2□√考试□√A 卷□√闭卷□考查□B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数24 14 28 286100实得分数一 . 填空(3×8=24分)1.设1,2,1a ,0,1,x b ,b a,则x2.设1,0,2a,0,1,0b,则ba3.曲面222y xz在点)2,1,1(处的切平面方程为4.将xoz 平面上的曲线1422zx绕x 轴旋转一周所得的旋转曲面的方程为5.函数)3ln(22y xz的驻点为6.设L 为连接)0,1(到点)1,0(的直线段,则dsx y L)(7.幂级数13n nn x的收敛半径为8.微分方程xey3的通解为y二 .计算题(7×2=14分)1.设)ln(22y xy z,求dz .2.设函数),(y x f z 是由方程333a xyz z所确定的具有连续偏导数的函数,求22,xzxz.姓名:学号:试题共5 页加白纸3 张密封线GDOU-B-11-302三 .计算下列积分(7×4=28分)1.dxdy x yD)(2,其中D 是由0y, 2x y及1x所围成的闭区域。
2.证明曲线积分dy xy xdxy xy )2()2(2)1,1()0.0(2在整个xoy 平面内与路径无关,并计算积分值。
3.计算dxdyz dzdx y dydzx )3()2()1(,其中是球面9222zyx的外侧。
4.计算dxdy yxD2211,其中D 是由2522yx围成的闭区域。
四 .计算题(7×4=28分)1.判别级数2121)1(nn n是否收敛? 若收敛,是绝对收敛还是条件收敛? 2.将函数31)(xx f 展开为x 的幂级数。
3. 求微分方程62ydxdy满足初始条件20xy的特解。
4.求微分方程xe yy 的通解。
五.证明)()()(ydx x f x dxx f dy(6分)2014-2015学年第二学期《高等数学》A 卷(参考答案及评分标准课程号:×2一、填空(3×8=24分)1. 2;2. 2,0,1;3.02zyx;4. 4.14222zyx;5.)0,0(;6.2;7.3;8. 21391c x c ex二、计算题(14分)1.222yxxyx z ,222222)ln(yxyy xy z ,(4分)dy yxyy xdxyxxydz]2)[ln(22222222(3分)2.令),,(z y x F 333a x yz z (1分),得y zF F zx 33,12,则yzF F xzzx 3312,(4分)则322222)33(6)33(6y zz y zx z z xz. (2分)三.计算下列积分(7×4=28分)1.原式101)21()21()(4101022分3210分422dx x dxy x ydyx y dxxx2.设xy xy x Q y xy y x P 2),(,2),(22,有y xxQ yP22,所以曲线积分与路径无关。
目录2012年广东海洋大学819数学物理方法考研真题试题试卷 (2)2013年广东海洋大学819数学物理方法考研真题试题试卷 (4)2014年广东海洋大学819数学物理方法考研真题试题试卷 (6)2016年广东海洋大学819数学物理方法考研真题试题试卷 (8)2017年广东海洋大学819数学物理方法考研真题试题试卷 (10)819《数学物理方法》第1页共2页广东海洋大学2012年攻读硕士学位研究生入学考试《数学物理方法》(819)试卷(请将答案写在答题纸上,写在试卷上不给分。
本科目满分150分)一、名词解释(30分,每小题6分)1、定解问题2、微分方程的古典解3、位势方程4、线性微分方程5、Poisson 方程二、填空题(20分,每空4分)1、与热传导方程相似的物理问题有:、等。
2、Fourier 变换的积分表达式:。
3、Dirichlet 边界条件表达式为:。
4、微分方程特征函数为:。
三、简答题(30分,每小题10分)1、简述非齐次线性微分方程的定义,并指出下列方程的性质:激波方程:0t x u uu +=KdV 方程:60t x xxx u uu u -+=多空介质方程:m t u k u =∆2、简述二阶线性偏微分方程的分类方法,并指出下列方程的类型:43260+-++=xx xy yy x y u u u u u 。
3、简述分离变量法求解含有齐次边界条件的齐次线性偏微分方程的步骤。
四、写出二维Laplace 方程的差分方程。
(10分)五、设有一根拉紧的均匀柔软而有弹性的细弦,平衡时沿直线拉紧,。
广东海洋大学2007 —— 2008学年 第一学期 《 概率论与数理统计 》课程试题 课程号: 1920004 √ 考试 □ A 卷 √ 闭卷 □ 考查 √ B 卷 □ 开卷一 选择题(在各小题的四个备选答案中选出一个正确答案,填在题末的横线上,每小题3分,共15分) 1 设B A ,为两随机事件,且B A ⊂,则下列式子正确的是 A ))()(A P B A P = B ))()(A P AB P = C ))()|(B P A B P = D ))()()(A P B P A B P -=- 2设离散型随机变量X 的分布律为{}(),,2,1, ===k k X P k λ且 0>λ,则λ为 A )2=λ B )1=λ C )2/1=λ D )3/1=λ 3随机变量服从参数为的泊松分布,且已知,则= A ) 1 B ) 2 C ) 3 D ) 4 4设是取自总体的样本,则 服从分布是_____ A ) B ) C ) D ) 5设总体,其中未知,为其样本,下列各项不是统计量的是____ A) B) C) D)班级:姓名: 学号: 试题共六页加白纸三张 密封线GDOU-B-11-302二填空题(每小题3分,共39分)1十把钥匙中有三把能打开门,今不放回任取两把,求恰有一把能打开门的概率为2已知,,且与相互独立,则3设每次试验的成功率为,则在3次重复试验中至多失败一次概率为4设随机变量具有概率密度函数则5设随机变量,且随机变量,则6已知(X,Y)的联合分布律为:则7设随机变量具有概率密度函数则随机变量的边缘概率密度为8设正态随机变量的概率密度为则=9生产灯泡的合格率为0.5,则100个灯泡中合格数在40与60之间的概率为 ()10设某种清漆干燥时间取样本容量为9的样本,得样本均值和标准差分别为,则的置信水平为90%的置信区间为 ()11已知总体又设为来自总体的样本,则____ __ _(同时要写出分布的参数)12设是来自总体的一个简单随机样本,是总体期望的无偏估计量,则13设是总体的简单随机样本,则未知参数的矩估计量为三一箱产品由甲,乙两厂生产,若甲,乙两厂生产的产品分别占70%,30%,其次品率分别为1%,2%.现从中任取一件产品,得到了次品,求它是哪个厂生产的可能性更大.(12分)四设总体的概率密度为(,未知),是来自总体的一个样本观察值,求未知参数的最大似然估计值。
高数ⅱa卷答案 Prepared on 22 November 2020广东海洋大学2014—2015学年第二学期《高等数学Ⅱ》课程试题参考答案(A 卷)一、填空题(每空3分,共21分)1.若)()(x g x f 是的一个原函数,则⎰=dx x g )(C x f +)( . 2.=⎰x x dt t dx d sin 22cos 42cos 2)cos(sin cos x x x x -⋅ . 3.已知⎰+=C x F dx x f )()(,则=--⎰dx e f e x x )(C e F x +--)( 4.设x x f sin )(=时,则='⎰dx x x f )ln (C x +)sin(ln 5.设是连续的奇函数,)(x f 则=⎰-dx x f l l )( 0 6.改变二次积分的积分次序,⎰⎰=100),(y dx y x f dy ⎰⎰101),(x dy y x f dx 7. 方程032=-'-''y y y 的通解是x x e c e c y -+=231二、计算下列积分(每小题6分,共36分)1. 解:C x x x d xdx x x +==⎰⎰ln ln )(ln ln 1ln 1 …………(6分) 2. 解:C x x x x x x dx +-+-=--+-=-+⎰⎰)21(ln 31)211131)2)(1(( (或 C x x ++-=)12(ln 31) …………(6分) 3. 解: dx x e e x e d x xdx e x x x x ⎰⎰⎰----+-=-=cos sin )(sin sin …(3分)= )(cos sin x x e d x e x --⎰-- ………(4分)=xdx e e x x x x x sin cos sin ⎰------e ………(5分)所以,C x x e xdx e x x ++-=--⎰)cos (sin 21sin ………(6分) 4. 解: dt t dx t x t x 2333,22=-==+,则令 ……(1分)C x x x C t t t dt t t t dt t x dx +++++-+=+++-=++-=+=++⎰⎰⎰3332222321ln 323)1(231ln 332311131321)(……(6分)5. 解:2sin sin cos cos cos 2220200=-=-=⎰⎰⎰πππππππx x xdx dx x dx x (6分)6. 解:1sin 2sin 2cos 20)cos sin (1010112==+=+⎰⎰-x dx x dx x x x …(6分) 三、计算下列各题(每小题5分,共15分).1.xy e z xy sin +=,求yz x z ∂∂∂∂,. 解:xy y ye xz xy cos +=∂∂ …………(3分) cos xy z xe x xy y∂=+∂ …………(5分) 2.)2ln(y x z +=,求 22xz ∂∂和y x z ∂∂∂2. 解:2221y x y y z y x x z +=∂∂+=∂∂, …………(2分)2222222(2(1),)y x y y x z y x x z +-=∂∂∂+-=∂∂ …………(5分) 3. )643ln(z y x u -+=,求du . 解:dz z y x dy z y x dx z y x du 643664346433-+-+-++-+=…(5分)四、计算重积分(每小题5分,共10分).1. ⎰⎰-+Ddxdy x y x )(22,其中D 是由直线2=x 、x y =及x y 2=所围成的区域.解:原式=⎰⎰-+x x dy x y x dx 22220)( ………(3分) =dx x x )310(2320-⎰ ………(4分) =332 ………(5分) 2. dxdy y x D⎰⎰+22sin ,其中}4),({2222ππ≤+≤=y x y x D .解:原式 =220sin d r r dr πππθ⎰⎰ ………(3分)= -26π ………(5分)五、求解微分方程(8分). 解:3)1()(12)(+=+-=x x q x x p , ………(2分) 利用公式法,得所求微分方程的通解为:])1([12312C dx e x e y dx x dx x +⎰+⎰=+-+⎰ ………(6分))21()1(22C x x x +++= ………(8分) 六、三个正数之和为21,问三个数为何值时才使三者之积最大(10分)解:设三个正数分别为z y x ,,,依题意得:xyz u =,满足21=++z y x设)21(),,(-+++=z y x xyz z y x L λ ………(4分)因为⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=02100L 0z y x L xy L xz yz L z y x λλλλ 得7===z y x ………(9分)由于只有一个驻点,所以当7===z y x 时,三者之积u 最大。
GDOU-B-11-302广东海洋大学 2011—2012学年第二学期班级:姓名:学号:试题共 6 页加白纸 3 张密封线《高等数学》试题答案和评分标准课程号:19221101x2考试□A卷闭卷□考查B卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数211428325100实得分数一、填空(3×7=21分)1. 设,则 ,2. 过点且与平面垂直的直线方程为3. 设曲线,则=4. 改变积分次序=5. 函数的傅立叶级数在x=处收敛于6. 函数在点处的梯度为7. 微分方程通解为二 .计算题(7×2=14分)1. 设,求.2.设是由方程所确定的具有连续偏导数的函数,求.三 .计算下列积分(7×4=28分)1. ,其中是由直线以及所围成的闭区域。
2. ,其中是由围成的闭区域。
3. 设曲线积分在整个平面内与路径无关,求常数,并计算积分值。
4. 计算,其中是区域的整个表面的外侧。
四 .计算题(8×4=32分)1. 判别级数 是否收敛,若收敛,是绝对收敛,还是条件收敛。
2. 将函数 展开为的幂级数。
3. 求微分方程的通解。
4.求微分方程的通解。
五. 设级数收敛,证明级数也收敛。
(5分)试题答案和评分标准一、填空(3×7=21分)8. 设,则 -1 ,9. 过点且与平面垂直的直线方程为10. 设曲线,则=11. 改变积分次序=12. 函数的傅立叶级数在x=处收敛于 013. 函数在点处的梯度为14. 微分方程通解为二 .计算题(7×2=14分)2. 设,求.解: (2) (2)(2)= (1)2.设是由方程所确定的具有连续偏导数的函数,求.解: 在方程两边对x求偏导数, (1)(2)得, (1)在方程两边对y求偏导数,(2)得, (1)三 .计算下列积分(7×4=28分)4. ,其中是由直线以及所围成的闭区域。
解:区域D可表示为, (1)(3)= (2)= (1)5. ,其中是由围成的闭区域。
第 1 页 共 35 页 、 广东海洋大学 2010—2011学年第 一 学期 《 高 等 数 学 》课程试题 课程号: 19221101x1 □√ 考试 □√ A卷 □√ 闭卷 □ 考查 □ B卷 □ 开卷
题 号 一 二 三 四 五 六 七 八 九 十 总分 阅卷教师 各题分数 18 42 40 100 实得分数
一 . 填空(3×6=18分) 1. 函数 xxexf)(的拐点是2(2,2)e
2. 设 )1( )ln(2xxxf,则 )(xf=2/2tec. 22ln,,()()2ttte
xtxefteftc设则
3. 曲线321tytx在2t处的切线方程为 y-8=3(x-5) . 233/232dyt
tkdxt
4. 设xtdtx0sin)(,则)4(' 2/2. 5. 设 xxxf1)1()(,则 )1(f等于 1 1111ln(1)ln(1)22ln(1)ln(1)11[(1)][](1)xxxxxxxxxxxxxeexxx
二 .计算题(7×6=42分) 1. 求30sin22sinlimxxxx.
班级:
姓名:
学号:
试题共
5 页
加白纸
3 张
密 封 线
GDOU-B-11-302 第 2 页 共 35 页
333000230sin22sin2sincos2sin2sin(cos1)limlimlim2()2lim1xxxxxxxxxxxxxxxxx
等价
2. 求不定积分dxxxcossin13.
3. 已知xxsin是)(xf的原函数,求dxxxf)('. 2sinssin()()ssinsin()()()()xxcoxxfxxxxcoxxxxfxdxxdfxxfxfxdxcxx
4. 设方程05232yxeyx确定函数)(xyy,求dxdy. (1)34034xyxyxyxeyyyeyey方程两边对求导:
5. 求xexfxcos)(的三阶麦克劳林公式.
23233(1...)(1...)1()2326xxxxxxox
242211(1)cos1()2!4!(2)!nnnxxxxoxn
211e1()2!!xnnxxxoxn 第 3 页 共 35 页
6. 求由曲线Inxy,y轴与直线Inay及Inby所围成图形的面积0ab.
解:选为y积分变量,如图,所求面积为承 abeyeAbaybaylnlnlnln][d 三. 应用及证明题(10×4=40分) 1. 证明:当0x时, xx1211. 证明: 11111()11()2221210()21(11)0xfxxxfxxxXfxxxx设
为增函数故时,f(x)>f(0)=0,得证.
2. 若函数)(xf在),(ba内具有二阶导函数,且)()()(321xfxfxf )(321bxxxa,证明:在),(31xx内至少有一点,使得0)(''f. 证明:因为()fx在(,)ab内具有二阶导数,所以由罗尔定理,得112(,)xx,223(,)xx,使得12()()0ff,又()fx在12,且满足罗尔定理的条件,故由罗尔定理,得: 1213(,)(,)xx,使得()0f。
3. 当x为何值时,函数dttexIxt02)(有极值.
2222()00()2(0)1000xxxIxxexIxexeIx
令最小值解:
故当时,y 第 4 页 共 35 页
4. 试确定a的值,使函数0,0,)(xxaxexfx在),(内连续. 00lim1lim()(0)1xxxeaxafaa故
广东海洋大学 2010—2011学年第 一 学期 《 高 等 数 学 》课程试题 课程号: 19221101x1 □√ 考试 □ A卷 □√ 闭卷 □ 考查 □√ B卷 □ 开卷
题 号 一 二 三 四 五 六 七 八 九 十 总分 阅卷教师 各题分数 18 42 40 100 实得分数
一 . 填空(3×6=18分) 6. 函数 xxexf)(的拐点是 . 7. dxx)sin1(3 .
8. 设 )1( )ln(2xxxf,则 )(xf= . 9. 函数xexy上点)1,0(处的切线方程是 . 10.设xtdtx0sin)(,则)4(' . 11.设xxfarctan)(,则 )1(f等于 . 二 .计算题(7×6=42分)
7. xxxxsin1coslim20.
班级:
姓名:
学号:
试题共
6 页
加白纸
3 张
密 封 线
GDOU-B-11-302 第 5 页 共 35 页
8. 求定积分dxxx312211. 9. 已知xexfx)(,求dxxxf)(''. 10.设参数方程tytxarctan)1ln(2确定函数)(xyy,求dxdy. 第 6 页 共 35 页
11.求Inxxf)(按)2(x的幂展开的四阶泰勒公式. 12.计算曲线)3(31xxy上相应于31x的一段弧的弧长. 三. 应用及证明题(10×4=40分) 5. 证明:当4x时, 22xx. 第 7 页 共 35 页
6. 设)(xf在]1,0[上连续,在)1,0(内可导,且0)1(f,求证:存在)1,0(,使得)()('ff.
7. 求函数xdtttxF0)4()(在]5,1[上的最大值与最小值. 第 8 页 共 35 页 8. 试确定a的值,使函数0,1sin0,)(2xxxxaxxf在),(内连续.
广东海洋大学 2011—2012学年第 一 学期 《 高 等 数 学 》课程试题 课程号: 19221101x1 □√ 考试 □√ A卷 □√ 闭卷 □ 考查 □ B卷 □ 开卷
题 号 一 二 三 四 五 六 七 八 九 十 总分 阅卷教师 各题分数 20 6 24 20 6 8 8 8 100 实得分数
一 . 求下列极限(5×4=20分) 12.3223lim23xxxx 原式=236(32)62396lim123xxxxex
2.30arcsinlimsinxxxx
班级:
姓名:
学号:
试题共
6 页
加白纸
3 张
密 封 线
GDOU-B-11-302 第 9 页 共 35 页
原式=2232220002222011arcsin111limlimlim3311lim631(11)xxxxxxxxxxxxxxxx分子通分分子有理化 3.212sin0lim12xxx 原式=2221122sin20lim1()2xxxxxe
4.232000limsinxxxtdttttdt 原式=320002612limlimlim12(sin)1cossinxxxxxxxxxxxx洛洛
二 .求函数2132xfxxx的间断点并判别其类型。(6分)
12112(1)(2)11lim1(1)lim(1)(2)(1)(2)1xxxfxxxxxxxfxxxxx
和为间断点
所以为可去间断点,x=2为无穷间断点. 三.求下列导数或微分(6×4=24分) 1.设2lncosxye,求dydx。 2221(sin)2......cosxxx
dyeedxe