电力系统继电保护第四章 4-3,4-4
- 格式:ppt
- 大小:1.71 MB
- 文档页数:33
纵联保护的基本原理:保护原理的本质是甄别系统正常和故障状态下电气量或非电气量之间的差别,纵联保护也不例外。
输电线路的纵联保护就是利用线路两端的电气量在故障与非故障时的特征差异构成的。
当线路发生区内故障、区外故障时,电力线两端电流波形、功率、电流相位以及两端的测量阻抗都有明显的差异,利用这些差异就可以构成不同原理的纵联保护。
特征:1.两侧电流量特征2.两侧电流相位特征3.两侧功率方向特征4.两侧测量阻抗值特征纵联保护的分类:纵联保护按照所利用信息通道的不同类型可以分为导引线纵联保护、电力线载波纵联保护、微波纵联保护和光纤纵联保护四种。
纵联保护按照保护动作原理,可以分为方向比较式纵联保护和纵联电流差动保护两类。
通信通道的构成1.导引线通道特点:信息无须加工,直接传送至对端,因而基本不存在同步问题保护原理一般采用电流差动原理,故也称导引线差动保护。
简单可靠,不受系统运行方式影响,不受振荡影响缺点:需铺设专门的导引线,投资高,互感器二次负载较大。
导引线本身的故障,会引起保护的拒动或误动。
2.电力线载波(高频)通道:1—阻波器;阻波器是由一个电感线圈与可变电容器并联组成的回路。
2—结合电容器;结合电容器与连接滤过器共同配合将载波信号传递至输电线路,同时使高频收发信机与工频高压线路绝缘。
3—连接滤波器;连接滤波器由一个可调节的空心变压器及连接至高频电缆一侧的电容器组成。
4—电缆;5—高频收发信;发信机部分系由继电保护装置控制,通常都是在电力系统发生故障时,保护起动之后它才发出信号。
6—刀闸优点:无中继通信距离长;经济,使用方便;工程施工比较简单缺点:由于其直接通过高压输电线路传送高频载波信号,因此高压输电线路上的干扰直接进入载波通道,高压输电线路的电晕、短路、开关操作等都会在不同程度上对载波信号进行干扰电力线载波通道工作方式:正常有高频电流方式(长期发信方式)正常无高频电流方式(故障启动发信方式)移频方式特点通信通道独立于输电线路通信频带宽,300-30000MHz ,传输速度快受外界干扰的影响小传输距离有限4.光纤通道特点通信容量大,光纤通信的经济性佳光纤通信还有保密性好光纤最重要的特性之一是无感应性能通信距离有限高频信号的分类1.闭锁信号:即无闭锁信号是保护作用于跳闸的必要条件,或者说闭锁信号是阻止保护动作于跳闸的信号。
一、中性点接地方式与接地故障种类 按单相接地短路时接地电流的大小分 大电流接地方式中性点直接接地中性点经小电阻接地小电流接地方式中性点不接地中性点经消弧线圈接地国际上的定量标准不同接地方式下的接地故障特点大电流接地方式不同接地方式下的接地故障保护策略零序分量特征零序分量的参数特点零序电压故障点零序电压最高,距离故障点越远零序电压越低零序电流零序电流超前于零序电压其分布取决于线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关零序功率方向故障线路,两端零序功率的方向与正序功率的相反零序电压、电流的相位关系系统运行方式的影响系统运行方式变化时,只要送电线路和中性点接地变压器数目不变,零序阻抗和零序网络就不变。
12二、中性点有效接地系统的接地保护1.零序电流瞬时速断(零序I段)保护采用单相自动重合闸时2.零序电流限时速断(零序II 段)保护 工作原理与相间限时电流速断保护一样其启动电流首先考虑和下一条线路的零序电流速断配合并线路的零序电流速断配合,并延迟一个时限以保证动作的选择性。
整定原则:12⋅⋅′′′=′′act rel act I K I 当保护间的变电站母线上接有中性点接地变压器时,存在“助增电流”,整定原则变为:210rel act act brK I I K ⋅⋅⋅′′′′′=000k BCbr k ABI K I ⋅⋅⋅= 分支系数零序II 段的灵敏系数校验3. 零序过电流(零序III段)保护保护只需从该变压器高压侧开始考虑动作延时的配合 在同一线路上零序过电流保护比相间短路过电流保护具有较小的动作延时4.方向性零序电流保护零序电流实际的流向是由故障点流向各个中性点接地的变压器,在变压器接地数目较多的复杂网络,需要考虑零序电流保护动作的方向性。
在零序电流保护的基础上增加零序功率方向元件,利用正反方向故障时,零序功率方向的差别,闭锁可能误动作的保护,保证动作的选择性。
零序方向元件的电压死区问题5. 零序电流保护的优缺点三、零序电压、电流的获取实现接地短路零序保护的关键零序电压过滤器3U U U U &&&&=++ 加法器0C B A各种获取方式电压互感器开口三角形接法电压互感器接于发电机中性点集成电路和微机保护中的加法器实现电压互感器开口三角形接法电压互感器接于发电机中性点零序电流过滤器3I I I I C B A &&&&=++零序电流的获取获取方式电流互感器三相星形接法电缆的零序电流互感器 不平衡电流问题由电流互感器的传变特性不一致产生致产生相间故障时最严重一、高阻接地故障二、零序反时限过电流保护为提高灵敏度,起动电流按躲开正常运行时的不平衡电流整定动作延时采用甚反时限特性.relk act unbreK I I K =13.51Kt I =−25.()k actI单相接地时(A 相)A 相对地电压为零对地电一、中性点不接地电网中单相接地故障的特点正常时,线电压对称,每相负荷电流和对地电容电流均对称,三相电流之和(零序)为零⎧=−0D A U & 相对地电压为零,对地电容短接3 B 、C 相对地电压和电容电流增倍三相负荷电流和线电压仍然对称具体分析:相接地后各⎪⎨=−==°−1503j e E E E U U &&&&& A 相接地后,各&&&C B D I I I +=03C U I D ωϕ=AE &E &ADB U −&DC U −&I & 从接地点流回的电流为线路端的零序电流?030=I&D 0A D U −=&BE &CCBBC U &B CI &BI &CI &D I &DI &−实际的网络存在发电机和多条支路CIBI I 0IC 0ω0=AII &电容性无功功率从母线路始端存在零序电D BI CI BII CII BG CG故障线路II :II C U I 0033ωϕ=&&&&&−=3)C C (U I II II 00033−=∑ωϕ0=AII &电容性无功功线路始端存在零序电流,其大小为全系统非故障元件对地电容电流之总和电容性无功功率)I I I I (I CGBG CI BI II +++0率从线路流向母线DAII I I &&−=电容性无功功率发电机G 的特征与非故障线路相同件的对地电容构成32中性点不接地电网的单相接地特点:二、中性点不接地系统中的单相接地保护利用接地后出现的零序电压带延时动作于信号不能实现故障选线——无法知道故障是在那一条线路34点实现有选择性地发出信号或动作于跳闸为了提高可靠性和灵敏性——采用延时和电流元件控制方向元件相位比较回路的方案36一、中性点经消弧线圈接地电网的单相接地故障特点电弧,引起弧光过电压,从而对电网造成进步破坏。
第四章输电线路纵联保护4.1.1 输电线纵联保护概述仅利用线路一侧的电气量所构成的继电保护(单端电气量),无法区分本线路末端与相邻线路(或元件)的出口故障,如:电流保护、阻抗保护。
为此,设法将被保护元件两端(或多端)的电气量进行同时比较,以便判断故障在区内?还是区外?将两端保护装置的信号纵向联结起来,构成纵联保护。
——与横向故障的称谓进行对应比较(后面再用图例说明“纵、横”的区别)。
单端电气量保护:仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护或出口故障的第二种保护。
(通常设计为:三段式)。
纵联保护:利用被保护元件的各侧电气量,可以识别:内部和外部的故障,但是,不能作为后备保护。
输电线路纵联保护结构框图在设备的“纵向”之间,进行信号交换横向关系通信设备通信设备通信通道继电保护装置继电保护装置TATATVTV(如:横向故障)纵联保护有多种分类方法,可以按照通道类型或动作原理进行分类。
1)通道类型:导引线电力线载波微波光纤⎪⎩⎪⎨⎧2)动作原理:比较方向比较相位基尔霍夫电流定律(差电流)⎧⎪⎨⎪⎩还可以将通道类型与动作原理结合起来进行称呼。
如:光纤电流差动(简称:光差),高频距离。
通道(信号交换手段)4.1.2 两侧电气量的特征分析、讨论特征的目的:寻找内部故障与其他工况(正常运行、外部故障)的特征区别和差异——>提取判据,构成继电保护原理。
当然,构成原理后,再分析影响因素;并研究消除影响因素的对策、措施(需要权衡利弊)。
一、两侧电流相量和(瞬时值和)的故障特征基尔霍夫电流定律:在一个节点中,流入的电流等于流出的电流。
按照继电保护规定的正方向:——指向被保护元件。
那么,基尔霍夫电流定律可以修改为:在任何一个节点中,流入的电流之和等于0。
下面,用图例说明。
基尔霍夫电流定律:53241I I I I I++=+053241=---+I I I I I改写为:此式表明:流入节点的电流之和等于0。
第4章输电线路纵联保护电流、电压保护和距离保护都是只反映被保护线路一侧的电量,为了获得选择性,其瞬时切除的故障范围只能是被保护线路的一部分,即使性能较好的距离保护,在单侧电源线路上也只能保护线路全长的80%左右,在双侧电源线路上瞬时切除故障的范围大约只有线路全长的60%左右。
在被保护线路其余部分发生故障时,都只能由延时保护来切除。
这对于很多重要的高压输电线路是不允许的,为了电力系统的安全稳定,线路上要求设置具有无延时切除线路上任意处故障的保护装置,输电线的纵联保护就是在这种背景下产生的。
因此仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反应线路两侧的电气量才可能区分上述两点故障,达到有选择性地快速切除全线故障的目的。
为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系,这种保护装置称为输电线的纵联保护。
4.1 输电线路纵联保护的基本原理与类型仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反映线路两侧的电气量才能区分上述两点故障,达到有选择性地快速切除全线故障的目的。
为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系。
这种保护装置就称为输电线的纵联保护。
4.1.1 输电线路纵联保护的基本原理当输电线路内部发生如图4.1所示的k1点短路故障时,流经线路两侧断路器的故障电图4.1 输电线路纵联保护的基本原理示意图流如图中实线箭头所示,均从母线流向线路(规定电流或功率从母线流向线路为正,反之为负)。
而当输电线路MN的外部发生短路时(如图中的k2点),流经MN 侧的电流如图中的虚线箭头所示,M侧的电流为正,N侧的电流为负。
利用线路内部短路时两侧电流方向同相而外部短路时两侧电流方向相反的特点,保护装置就可以通过直接或间接比较线路两侧电流(或功率)方向来区分是线路内部故障还是外部故障。