电力系统继电保护微机保护基础
- 格式:ppt
- 大小:1.25 MB
- 文档页数:31
2002年4月电力系统微型计算机继电保护1.以微型计算机为核心的继电保护装置称为微型机继电保护装置。
2.交流电流交换器输出量的幅值与输入模拟电流量的幅值成正比。
3.脉冲传递函数定义为:在零初始条件下,离散系统输出响应的Z变换与输入信号的Z变换之比值4.当离散系统特征方程的根,都位于Z平面的单位圆之外时,离散系统不稳定。
5.在一个控制系统中,只要有一处或几处的信号是离散信号时,这样的控制系统称为离散_控制系统。
6.反映电力系统输电设备运行状态的模拟电气量主要有两种:来自电压互感器和电流互感器二次侧的交流电压和交流电流信号。
7.在一个采样周期内,依次对每一个模拟输入信号进行采样的采样方式称为顺序采样。
8.脉冲传递函数分子多项式为零的根,称为脉冲传递函数的零点。
9.从某一信号中,提取出有用频率成份信号的过程,称为滤波。
10.合理配置数字滤波器脉冲传递函数的零点,能够滤除输入信号中不需要的频率成份。
11.合理配置数字滤波器脉冲传递函数的极点,能够提取输入信号中需要的频率成份信号。
12.数字滤波器脉冲传递函数的零点z i在脉冲传递函数表达式中以因子1-Z i Z-1的形式出现。
13.如果设计样本的频率特性频谱的最大截止频率为fmax,则要求对设计样本的单位冲激响应h(t)进行采样时,采样频率要求大于2fmax。
14.为了提高微型机继电保护装置的抗干扰能力,在开关量输入电路中采取的隔离技术是光电隔离。
15.利用正弦函数的三个_瞬时采样值的乘积来计算正弦函数的幅值和相位的算法称为三点采样值乘积算法。
16.在电力系统正常运行时,微型机距离保护的软件程序工作在自检循环并每隔一个采样周期中断一次,进行数据采集。
17.微型机距离保护的软件程序主要有三个模块—初始化及自检循环程序、采样中断子程序和故障处理程序。
18.在电力系统正常运行时,相电流瞬时采值差的突变量起动元件△I bc等于零。
19.电力系统在非全相运行时,一旦发生故障,则健全相电流差起动元件起动。
电力系统继电保护基础知识一、电力系统继电保护的基本概念1. 继电保护的3个组成部分:•测量回路•逻辑回路•执行回路2. 继电保护的3个基本任务:•切除故障元件•反映不正常运行状态•与其他自动装置配合3. [判断题] 电力系统的继电保护是通过监视电力系统中的电气量的变化从而判断系统是否出现故障。
(×)4. 可靠性包括安全性(不误动)和可信赖性(不拒动),主要取决于保护装置本身的制造质量。
5. 选择性是通过合理地选择保护方案、正确地进行整定计算以及精确地调整试验而获得的。
6. 灵敏性并不是越大越好,有时与安全性相矛盾。
7. 保护的整定时间是通过时间继电器来整定的,所以整定的动作时间是指时间继电器的动作时间。
8. 电力系统安全自动装置包括:•低周、低压减负荷装置•自动重合闸•故障录波器•备自投装置•系统解列9. 逻辑回路包括:•“或”回路•“与”回路•“延时启动”回路•“记忆”回路10. 最早出现的是过电流保护类型的熔断器装置,以后经历了机电型、晶体管型、集成电路型、微机型四个阶段。
11. 微机保护软件是由初始化模块、故障检出模块、故障计算模块组成。
12. 不通电时闭合的触点叫常闭触点,不通电时断开的触点叫常开触电。
二、电网的电流保护No.1 单侧电源网络相间短路的电流保护1、(瞬时)电流速断保护校验时要求最小保护范围不小于本线路全长的15%~20%。
2、限时电流速断保护要求灵敏系数大于1.3~1.5。
3、定时限过电流保护要求近后备的灵敏系数大于1.3~1.5,远后备的灵敏系数大于1.23。
4、时间阶梯∆t为0.5s。
5、对于线路-变压器组接线,电流速断可以保护线路全长。
可以只装设电流速断和过流保护。
6、相间电流速断保护比零序电流速断保护范围小,因为零序阻抗较大,其电流曲线陡。
7、运行方式的变化对电流保护有影响,对低电压保护、距离保护等均无影响。
8、定时限过电流保护整定:其中,Krel=1.15~1.25,Kre=0.85~0.95。
电力系统基本概念及继电保护基本原理电力系统基本概念一、电力系统的组成1、电能在现代社会中的地位及优点:1)、电能在现代社会中是最重要、也是最方便的能源;2)、它可以方便地转化为别的形式的能,如机械能、热能、光能、化学能等;3)、易于实现输送和分配;4)、应用规模也很灵活。
2、几个基本概念:电力系统--生产、输送、分配和消费电能的各种电气设备连接在一起而组成的整体称为电力系统。
动力系统--如果把火电厂的汽轮机、锅炉、供热管道和热用户,水电厂的水轮机和水库等动力部分与电力系统包括在一起,称为动力系统。
电力网--电力系统中输送和分配电能的部分称为电力网。
二、对电力系统运行的基本要求1、电力系统运行的基本特点:1)电能不能大量存储:生产、输送、分配和消费同时进行;2)电力系统的暂态过程非常短促;3)与国民经济的各部门及人民日常生活有着极为密切的关系,供电的突然中断会带来严重的后果。
2、根据以上电力系统的特点,对其的基本要求是:1)保证安全可靠供电;具体做法为:A 严密监视设备的运行状态和认真维修设备以减少其事故的发生;B 不断提高运行员的技术水平,减少误操作的次数;C 系统具备有足够的有功及无功电源;D 完善电力系统的结构,提高抗干扰能力;E 利用现代的高科技实现对系统的控制和监视;F 根据对用电可靠性的要求,降负荷按等级划分。
2)要有符合要求的电能质量(电压和频率);3)要有良好的经济性:降低耗媒率,降低线损等。
三、电力系统的接线方式1、无备用接线方式:2、有备用接线方式:四、电压,电流,有功功率,无功功率,功率因数,频率的基本概念及相互关系U:电压有效值 I:电流有效值F:频率 CosǾ:功率因数P:有功功率 Q:无功功率S: 视在功率关系:S = P+ j QP = U I CosǾQ = U I SinǾ五、一次设备与二次设备的概念1、一次设备:指直接用于生产、输送和分配电能的生产过程的高压电气设备,它包括发电机、变压器、断路器、隔离开关、自动开关、接触器、刀开关、母线、输电线路、电力电缆、电抗器、电动机等;2、二次设备:指对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况或生产指挥信号所需的低压电气设备,如熔断器、控制开关、保护装置、控制电缆等。
继电保护基础知识和微机保护原理继电保护是电力系统中重要的安全措施之一,它的作用是在电力系统发生故障时,迅速切除或隔离故障点,保护电力设备和人身安全。
而微机保护利用先进的微机技术,结合各种传感器和控制装置,实现电力系统的准确、灵敏和可靠的保护,提高系统的稳定性和可靠性。
本文将介绍继电保护基础知识和微机保护原理。
一、继电保护基础知识1.继电保护原理继电保护根据电力系统的运行状态和故障特征,通过各种传感器和设备,对电力系统的电压、电流、功率等进行监测和测量,从而判断系统是否发生故障以及故障的位置和类型。
根据保护原理的不同,可以将继电保护分为差动保护、过流保护、间隙保护、距离保护等。
2.继电保护的类型继电保护按照保护范围的不同,可以分为发电机保护、变压器保护、线路保护、母线保护、馈线保护等。
不同的保护对象有着不同的保护特点和保护要求。
3.继电保护的组成继电保护由监测传感器、比较装置、判据装置和动作执行装置等组成。
监测传感器负责将电能转化为可测量的电信号,如电压互感器、电流互感器等;比较装置根据测量信号和设定值进行比较,判断系统的状态;判据装置根据比较装置的输出结果,生成动作指令,控制动作执行装置对保护范围内的设备进行保护动作。
1.微机保护系统结构微机保护系统由数据采集模块、微机主控装置、数据处理模块、监测和操作界面等组成。
数据采集模块负责采集保护对象的电压、电流等信号,并将其转化为数字信号;微机主控装置进行数据的处理和分析,并根据设定条件生成保护动作指令;数据处理模块进行数据的存储和管理,提供故障记录和统计报表等。
2.微机保护的特点微机保护具有以下特点:(1)准确性高:微机保护采用先进的数字信号处理技术,可以实时监测和测量电力系统的各种参数,提高保护的准确性和可靠性。
(2)速度快:微机保护系统的处理速度很快,可以在几十毫秒内完成对电力系统的故障判断和动作指令的生成。
(3)功能强大:微机保护具有丰富的功能,可以实现过流保护、差动保护、距离保护、频率保护等多种保护方式。
电力系统继电保护摘要:一种自动的测量和装置,它是指在电力系统中的发电机、线路等部件或电力系统自身出现故障而威胁到电力系统的安全操作时,可以对操作人员发出警报,或直接给受控制的断路器下达跳闸指令,以结束此类事故的发展。
完成此项自动控制的成套设备通常称为继电保护。
编者将对继电保护的基本原理、基本要求、基本任务、分类和设备的继电保护。
关键词:电力系统;继电保护;基本原理一、基本原理继电器应具备正确区分受保护部件是否在正常工作或出现故障、是否在保护区范围或区域以外。
为了达到这种目的,必须从电力系统故障前后的电物量的变化特点出发,建立起保护设备的安全防护功能。
在电力系统故障后,工频电气量的变化表现为:1)增加了电流。
当发生短路时,在断路处与供电端的电力装置及传输线的电流会从负载电流增加到远大于负载电流。
2)电压下降(voltage)。
在相间和接地之间出现短路时,系统中各个点的相位电压或相电压都会降低,并且随着距离短路点的增加而降低。
3)电流和电压的相位角度发生变化。
当三相短路时,电流和电压的相角是负载的功率因数角,通常为20度左右,当三相短路时,电流和电压的相角是60~85度,而当保护反向短路时,电流和电压的相位角度为180°+(60°~85°)。
4)测量阻抗发生变化。
测量电阻,也就是测量点的电压和电流的比率(在保护装置上)。
在正常工作状态下,测得的阻抗是负载阻抗;当金属短路时,测量的阻抗向线路的阻抗转换,当发生故障时,测量的阻抗明显降低,而阻抗角增加。
非对称短路时,会产生相序成分,例如,当两相或单相接地短路时,会产生负序电流和负序电压;在单相接地的情况下,会产生负、零序和电压分量。
这些分量在正常运行时是不出现的。
根据短路故障时的电量变化,可以根据不同的原理,组成继电保护。
另外,除上述的反应工频电气量保护外,还提供了气体保护、继电保护等反应非工频电容量保护。
二、基本要求要实现继电保护装置任务,必须满足四个基本的技术需求:选择性、速度性、灵敏度、可靠性。
电力系统微机继电保护技术导则一、引言电力系统是现代社会不可或缺的基础设施之一,而微机继电保护技术在电力系统中起着至关重要的作用。
本文将详细介绍电力系统微机继电保护技术的相关内容,包括其定义、发展历程、应用领域、工作原理等。
二、定义与发展历程2.1 定义微机继电保护技术是指利用微处理器和相应的软件实现对电力系统进行故障检测、故障定位和故障切除等操作的一种保护技术。
2.2 发展历程微机继电保护技术起源于20世纪70年代,当时计算机技术正处于迅速发展阶段。
最早的微机继电保护装置采用离散元件构成的逻辑线路来实现逻辑控制功能。
随着集成电路技术的进步,20世纪80年代中期出现了第一代真正意义上的微机继电保护装置。
经过几十年的发展,到了21世纪初,微机继电保护装置已经成为电力系统保护的主流技术。
随着计算机硬件和软件技术的不断进步,微机继电保护装置在功能、可靠性和性能上得到了显著提升。
三、应用领域微机继电保护技术广泛应用于各类电力系统,包括发电厂、变电站、配电网等。
它可以实现对电力系统各个环节的保护,包括线路、变压器、发电机等。
四、工作原理微机继电保护装置由硬件和软件两部分组成。
硬件部分包括微处理器、采样模块、通信模块等;软件部分则是通过编程实现各种功能。
4.1 采样与数据处理微机继电保护装置通过采样模块对电力系统的信号进行采样,获取相应的数据。
然后,通过数据处理算法对采样得到的数据进行处理,以便进行故障检测和定位。
4.2 故障检测与定位基于采样得到的数据,微机继电保护装置可以实时监测电力系统中的故障情况,并通过判断故障类型和位置来进行相应的保护操作。
常见的故障检测和定位算法包括差动保护、过电流保护和距离保护等。
4.3 故障切除当微机继电保护装置检测到电力系统中存在故障时,它会根据预设的逻辑控制策略,切除故障部分,以避免故障扩大和对系统造成更大的损害。
五、优势与挑战5.1 优势微机继电保护技术相比传统的继电保护技术具有如下优势:•功能强大:微机继电保护装置可以实现多种复杂的功能,如差动保护、距离保护等。