探索轴对称的性质
- 格式:pptx
- 大小:465.28 KB
- 文档页数:20
7.3 探索轴对称的性质1. 什么是轴对称?轴对称是指图形存在一个轴线,使得图形关于这条轴线对称。
轴对称具有以下特点: - 被轴对称的图形的左半部分与右半部分完全重合; - 轴对称的图形具有相同的形状、大小和图案; - 轴对称的图形可以通过在轴线上旋转180度得到;2. 轴对称的图形种类轴对称的图形可以是二维图形,也可以是三维图形。
2.1 二维图形常见的二维图形中,有许多具有轴对称性质的图形,例如: - 正方形 - 矩形 - 圆形 - 镜像字母(例如字母X、字母H) - 雪花形状(例如六边形雪花)2.2 三维图形在三维空间中,轴对称的图形种类更加丰富。
除了二维图形的轴对称性质外,三维图形还有额外的轴对称性质,例如: - 立方体 - 圆柱体 - 球体 - 圆锥体等3. 轴对称在日常生活中的应用轴对称的性质在日常生活中有许多实际应用。
3.1 拼图游戏拼图游戏中,常常使用轴对称的形状作为拼图的元素,通过将轴对称的形状拼接在一起,来完成整个拼图。
例如,一些儿童拼图书中会出现许多轴对称的动物形状,通过拼接这些形状,可以锻炼孩子们的观察能力和操作能力。
3.2 电子产品设计在电子产品的设计中,轴对称的性质也经常被应用。
例如,许多手机的外观设计和按键布局都是以轴对称的方式设计的,这样可以使得手机外观更加美观、布局更加整齐。
3.3 建筑设计在建筑设计中,轴对称的性质也经常被应用。
许多建筑物的立面设计和对称结构都是以轴对称的方式进行设计的,这样可以使得建筑物更加美观、稳定。
4. 如何判断一个图形是否轴对称?判断一个图形是否轴对称可以通过以下步骤进行:1.找到图形的中心点,并确定可能的轴线;2.对图形进行折叠,使得两侧完全重合;3.判断折叠后两侧是否完全重合,如果重合则图形是轴对称的。
5. 轴对称的性质与数学关系轴对称的性质在数学中也有一些相关的概念和性质。
5.1 点关于轴线的对称性一个点关于轴线的对称点是指,将点沿着轴线折叠后得到的点。
北师大版数学七年级下册5.2《探索轴对称的性质》教案一. 教材分析《探索轴对称的性质》这一节的内容,主要让学生了解轴对称的性质,并学会运用这些性质解决实际问题。
教材通过丰富的图片和实例,引导学生发现轴对称图形的性质,从而培养学生的观察能力、思考能力和实践能力。
二. 学情分析学生在七年级上册已经学习了轴对称的概念,对轴对称有了初步的认识。
但他们对轴对称的性质的理解还不够深入,本节课需要通过大量的实例和活动,让学生在实践中发现和总结轴对称的性质。
三. 教学目标1.知识与技能:让学生掌握轴对称的性质,并能运用性质解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生发现规律、总结规律的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:轴对称的性质。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考。
2.情境教学:利用图片、实例,创设情境,让学生在实践中学习。
3.小组合作:引导学生分组讨论,共同解决问题。
六. 教学准备1.准备相关的图片和实例,用于引导学生发现轴对称的性质。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生回顾轴对称的概念,激发学生对轴对称性质的兴趣。
2.呈现(10分钟)展示一系列具有对称性的图形,让学生观察并思考:这些图形有什么共同的特点?引导学生发现轴对称图形的性质。
3.操练(10分钟)让学生分组讨论,每组选择一个图形,尝试找出它的对称轴,并总结对称轴的特点。
然后,让学生尝试运用轴对称的性质解决实际问题。
4.巩固(10分钟)针对学生找出的对称轴,设计一些练习题,让学生解答,以巩固所学知识。
5.拓展(5分钟)引导学生思考:轴对称性质在实际生活中的应用。
可以让学生举例说明,也可以让学生自己设计一些应用场景。
6.小结(5分钟)对本节课的内容进行总结,强调轴对称的性质及其应用。
教学实践新课程NEW CURRICULUM一、教材分析1.教材所处的地位“探索轴对称的性质”是七年级下册《生活中的轴对称》中的第二节内容。
本节课是对轴对称图形的性质进行探索,主要通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的机会。
本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回顾与思考。
2.教学目标(1)知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等的性质。
(2)过程与方法:培养学生观察、分析能力。
(3)情感态度与价值观:通过创设情境,使学生体验数学就在身边,培养学生的审美情趣。
3.重点难点重点:(1)轴对称的性质的运用。
(2)运用轴对称的性质解决实际问题。
难点:灵活运用轴对称的性质解决实际问题。
二、教法分析鉴于教材特点及七年级学生模仿能力强、思维信赖于具体直观形象的特点,为了充分体现“以学生为主体,把课堂还给学生”的教学宗旨,结合本节课内容主要通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生“自主、合作、探究”的探究式和启发式教学法。
帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
教学准备:多媒体,网格纸,圆规,刻度尺,量角器等。
三、教学过程设计(一)复习引入:什么是轴对称图形?什么是成轴对称的图形?二者有怎样的区别?(二)自主探究[活动一]操作(个体活动)1.师生都拿出网格纸,将网格纸对折,然后用笔尖或圆规在纸上扎出“14”这个数字。
(为了后面研究的方便,引导学生将“1,4”的转折点都扎在网格纸的格点上)再将纸打开后铺平。
C AC '12B 'E 'EBD F 34F 'D 'A 'l2.在全班展示操作活动的不同结果,利用多媒体演示结果。
《探索轴对称的性质》评课稿本节课注重将数学课程标准的核心理念渗透于教学活动中,注重对学生核心素养的培养。
教学思路层次分明,以扎纸活动为载体,让学生经历扎一扎、指一指、画一画、议一议等活动,使探究活动贯穿于整个教学过程中,突出了教学重点,突破了教学难点。
教学中,以时事热点——第九届中国花卉博览会中的云轨创设情境,将车头的平面图形抽象出五边形,带学生进入扎纸活动,大多数学生都扎出无数多个点,当有学生只扎五个点就得到该图形时,教师抓住契机,帮助学生理清关键点的作用,激发学生探究欲望。
学生通过叠合的方法,感受两个图形中存在的对应元素——对应点、对应线段、对应角,进而探索出两个成轴对称图形的性质。
紧接着出示一个轴对称图形,引导学生发现两个成轴对称的图形与一个轴对称图形之间的关系,拓展延伸得到轴对称图形的性质。
在此基础上,教师顺势提出如何去画简单平面图形经过轴对称后的图形问题。
通过学生独立思考、动手去画、展示交流,提炼出画轴对称图形另一半的方法,然后教师运用几何画板演示做图步骤,帮助学生形成做图策略。
总之,本节课以学生的认知发展为教学依据,教师作为组织者、引导者、合作者展开教学,注重数学思想的渗透,注重发展学生合情推理的能力。
本节课从教学设计到教学实施精彩纷呈,值得学习和推广。
知新篇一.轴对称的性质及其应用(1)轴对称的性质:①对应点所连的线段被对称轴 。
②对应 相等,对应 相等。
(2)如图是一个轴对称图形,直线AO 是对称轴, 则相等的线段有: = , = 。
线段CD 被直线AO 。
量得30B∠,则∠E= 。
(3)设A 、B 两点关于直线MN 对称,则_____垂直平分______。
(4)等腰三角形是轴对称图形,它的底边被对称轴_________。
提醒:(1)对称轴上的点即是对应点所连线段的垂直平分线. (2)找准对应线段和对应角。
二.轴对称在实际中的应用 1.按边分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 2.按角分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 三.三角形的三边关系1.AB+AC BC, AB-AC BC.2.结论:三角形两边的和______第三边.三角形两边的差____第三边.【典例】【思路分析】判断三条线段能否组成三角形可根据三角形三边关系:“两边之和大于第三边,两边之差小于第三边”进行判断.最简单方法是:看较短两边的和是否大于最长边. 【解析】【点睛】在判断已知三条线段是否能够组成三角形,必须满足下列两个条件之一:(1)如果选最长边作第三边,则需判断其余两边之和大于第三边,(2)如果选最短边作第三边,则需判断其余两边之差小于第三边.三角形三边关系靓题拾贝三角形的三边关系:(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.注意:这里的“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值. 一、 判断三条已知线段能否组成三角形【例1】已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 ( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10解:选C .对于A ,1+2=3,所以A 不能,对于B ,2+5<8,所以B 不能,对于D ,4+5<10,所以D 不能. 二、已知三角形的周长,判断三边能否组成等腰三角形【例2】将长度为12m 的一根铁丝,截成三段,能围成等腰三角形的是 ( ) A.8m ,2m ,2m B.7m ,2.5m ,2.5m C.6m ,3m ,3m D.1m ,5.5m ,5.5m 解:选D .根据三边关系,三个选项A 、B 、C 均有两边之和小于或等于第三边. 三、已知三角形的两边长,求第三边取值的个数【例3】已知三角形的三边长分别是3、8、x ,若x 的值为偶数,则x 的值有 ( ) A.6个 B.5个 C.4个 D.3个解:选D .根据三角形三边关系有:8-3<x <8+3即5<x <11,若x 为偶数,则x=6,8,10.1.探新知 预习乐园提素能 自测自评A B ECD O214版北师七上学案教用P12左上T22.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为( ) A .30B .50C .90D 100.3.下列图形中,哪一幅成轴对称( )4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )A.6个B.5个C.4个D.3个5.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取 了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )A.5mB.15mC.20mD.28m6.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为______.7.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .8.两根木棒的长分别是8cm ,10cm ,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x 的取值范围是________.9.如图所示,在△ABC 中,D ,E 是BC ,AC 上的两点,连结BE ,AD 交于F ,(1)图中有几个三角形?并表示出来;(2)△BDF 的三个顶点是什么?三条边是什么? (3)AB 边是哪些三角形的边? (4)F 点是哪些三角形的顶点?10.一个等腰三角形的周长是36 cm .(1)已知腰长是底边长的2倍,求各边的长; (2)已知其中一边长8cm ,求另外两边的长.11.已知三角形的两边长分别是4cm 和9cm .(1)求第三边的取值范围; (2)已知第三边长是偶数,求第三边长;(3)求周长的取值范围.12.(全家总动员)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式",很长时间没有人答出,小兰仅仅拿出了一面镜子,就很快解决了这道题目,你知道她是怎样做的吗?答案探新知,预习乐园:一、1.互相重合 对称轴2.(1)(2)(4)(5)是轴对称图形,都有2条对称轴,(3)是轴对称图形,有无数条对称轴。
探索轴对称的性质燕山中学庄晓燕教学目标:知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
过程与方法:经历探索轴对称的性质的过程,在操作活动和观察分析过程中发展学生主动探究和合作交流的习惯,培养学生观察、探索、归纳、说理等能力。
情感、态度与价值观:通过学生欣赏生活中的轴对称图形和操作活动,培养其空间观念和审美意识,体会轴对称在生活中的广泛应用,提高他们的学习兴趣和数学素养。
重点:探索轴对称性质。
运用轴对称的性质解决简单的实际问题。
难点:“对应点所连的线段被对称轴垂直平分”的探索及灵活运用轴对称的性质。
教具学具:多媒体、课件,长方形白纸一张,圆规、刻度尺,平面镜、写有的纸片。
教学过程:一.创设情境,引入新课。
欣赏两副图片,说出他们的区别和联系,让学生明白轴对称与轴对称图形是相对而言的,它们之间有很多共同的性质,从而引入新课。
二.动手操作,探索性质第一环节:探究1:活动(一):1. 将长方形纸对折,用圆规尖或笔尖扎出一个点, 然后把纸打开铺平,得到的点分别记为A 和A′,折痕所在的直线为l 。
(如下图:)点A和点A′有什么关系?2.将长方形纸对折,再扎出一个点, 然后把纸打开铺平,得到的点分别记为 B 和 B′.点B 和点B′有什么关系?在轴对称图形中,沿对称轴对折后,能够互相重合的点叫对应点(对称点)。
3. 连接点A和点A′,点B和点B′,与对称轴分别交与点D,E。
4.(1)观察、交流:图中有哪些相等的线段?线段AA′与直线l有什么关系?线段BB′与直线l有什么关系?说说你的理由 .活动(二):1. 将长方形纸对折,再扎出一个与点A、B不在同一直线上的点, 然后把纸打开铺平,得到的点分别记为C 和C′.连接AB, A′B′,AC, A′C′,BC,B′C′。
2. △ABC 与 △A ′B ′C ′有什么关系?3.(1)观察、 交流:线段AB 与A ′B ′有什么关系?线段AC 与A ′C ′有什么关系?线段BC 与B ′C ′呢?说说你的理由 .在轴对称图形中,沿对称轴对折后,能够互相重合的线段叫对应线段。