电子衍射分析及晶体生长方向判定电子衍射基础
- 格式:pdf
- 大小:841.29 KB
- 文档页数:9
实验四选区电子衍射与晶体取向分析一、实验目的与任务1)通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。
2)选择合适的薄晶体样品,利用双倾台进行样品取向的调整,利用电子衍射花样测定晶体取向的基本方法。
二、选区电子衍射的原理和操作1.选区电子衍射的原理使学生掌握简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。
选区电子衍射的基本原理见图10—16。
选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过,使得在荧光屏上观察到的电子衍射花样仅来自于选区范围内晶体的贡献。
实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,选区域以外样品晶体对衍射花样也有贡献。
选区范围不宜太小,否则将带来太大的误差。
对于100kV的透射电镜,最小的选区衍射范围约0.5m;加速电压为1000kV时,最小的选区范围可达0.1m。
2.选区电子衍射的操作1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。
2) 插入并选用尺寸合适的选区光栏围住被选择的视场。
3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。
对于近代的电镜,此步操作可按“衍射”按钮自动完成。
4) 移出物镜光栏,在荧光屏上显示电子衍射花样可供观察。
5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。
三、选区电子衍射的应用单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用:1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=L,可以进行物相鉴定。
2) 确定晶体相对于入射束的取向。
3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系。
实验四选区电子衍射与晶体取向分析一、实验内容及实验目的1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。
2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。
二、选区电子衍射的原理和操作1.选区电子衍射的原理简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。
选区电子衍射的基本原理见图4-1。
选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。
使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。
实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。
选区范围不宜太小,否则将带来太大的误差。
对于100kV的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。
图-1 选区电子衍射原理示意图1-物镜2-背焦面3-选区光栏4-中间镜5-中间镜像平面6-物镜像平面2.选区衍射电子的操作为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:(1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。
(2) 插人并选用尺寸合适的选区光栏围住被选择的视场。
(3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。
近代的电镜此步操作可按“衍射”按钮自动完成。
(4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。
(5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。
三、选区电子衍射的应用单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。
晶体单晶的晶向标定与分析
晶体的晶向标定和分析是材料学和晶体学中的重要课题。
下面是一般的晶向标定和分析方法:
晶向的标定:
1. 初步确定晶向。
使用显微镜或X射线衍射仪观察晶体,确定晶体中的某个区域。
2. 用比色法标定晶体定向。
将金属板或玻璃板放置在待测的晶向上,用酸或者盐溶液自下而上浸泡,由于不同的晶向会使得其表面在所反射的光的波长或者颜色不同。
在标定时,可以通过比较反射光下表面的颜色来确定晶体的晶向。
3. X射线晶体衍射法。
这是晶向标定的最常用方法之一。
将待测晶体放置于X射线衍射仪中,在不同的角度下,观察晶体的衍射图样,以此来确定晶体的晶向。
晶向的分析:
1. X射线衍射方法。
使用X射线衍射仪分析晶体的结构。
2. 电子衍射方法。
使用电子衍射仪或透射电子显微镜分析晶体的结构。
3. 晶体缺陷分析。
在图像中观察到的缺陷可以告诉我们关于晶体的晶向和结构的信息。
以上是晶体单晶的晶向标定与分析的一些基本方法和步骤,当然,在实际操作中可能还会有其他方法和技术。
电⼦衍射电⼦衍射 2.1 概述电⼦衍射与X-射线衍射的基本原理是完全⼀样的,两种技能所得到的晶体衍射花样在⼏何特征上也⼤致相似,都遵循劳厄⽅程或布拉格⽅程所规定的衍射条件和⼏何关系。
电⼦衍射与X-射线衍射的主要区别在于:(1)电⼦波的波长短,则受物质散射强(原⼦对电⼦的散射能⽐X-射线约⾼⼀万倍)。
电⼦波长短,决定了电⼦衍射的⼏何特点,使单晶的电⼦衍射谱和晶体的倒易点阵的⼆维截⾯完全相似,从⽽使晶体集合关系的研究变得简单多了。
(2)衍射束强度有时⼏乎与透射束相当,因此就有必要考虑它们之间的相互作⽤,使电⼦衍射花样分析,特别是强度分析变得复杂,不能像X-射线那样从测量强度来⼴泛地测定晶体结构。
(3)由于散射强度⾼导致电⼦穿透能⼒有限,因⽽⽐较适⽤研究微晶、表⾯和薄膜晶体。
(4)许多材料和矿物中得晶粒只有⼏微⽶⼤⼩,有时⼩到⼏千埃,不能⽤X-射线进⾏单个晶体的衍射,但却可以⽤电⼦显微镜在放⼤⼏万倍下,有⽬的地选择这些晶体,⽤选区电⼦衍射和微束电⼦衍射来确定其物相或其结构。
2.2 预备知识 2.2.1 布拉格定律⼊射波⽮量:k ;衍射波⽮量:k ¢;对于弹性碰撞:1/k k l ¢==**1;;2sin K k k r r K k dq ¢=-===当波长为l 的单⾊平⾯电⼦波以掠射⾓q (⼊射⾓⽅向与晶⾯的夹⾓)照射到晶⾯间距为hkl d 的平⾏晶⾯组(hkl )时,若满⾜:2sin hkl d n q l =为了简便起见,把式改为:2()sin hkld nq l =考虑到,可以把任意晶⾯组的n 级衍射都看成是与之平⾏但晶⾯间距⼩于n 倍的(nh nk nl )晶⾯组的⼀级衍射,使布拉格定律表达为:2sin d q l = 2.2.2倒易点阵和Ewald 球作图法(1)倒易点阵所谓倒易点阵,是指量纲为[L]-1的倒易空间内的另⼀个点阵,它与正空间内某⼀点特定的点阵相对应。
如果正点阵晶胞的单位⽮量(简称基失)为:,,a b c则相对应的倒易点阵基失为:***,,c c cb c c a a ba b c V V V 创 ===V c 为正点阵晶胞体积:()()()c V a b c b c a c a b =状=状=状可以证明,正、倒点阵的晶胞基失之间满⾜:1a ab bc c a b a c b c b a c a c b *********在倒易点阵内,有原点0*(即阵点(000))指向任⼀坐标为(hkl )的阵点的⽮量:1/hkl hkl hkl g ha kb lc d ***=++= 且g这就是说,所定义的倒易⽮量:hkl g或其断点---hkl 到⼀阵点,代表着正点阵中的晶⾯组(hkl )。
第十章 电子衍射一、概述透射电镜的主要特点是可以进行组织形貌与晶体结构同位分析。
若中间镜物平面与物镜像平面重合(成像操作) ,在观察屏上得到的是反映样品组织形态的形貌图像;而若使中间镜的物平面与物镜背焦面重合 (衍射操作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。
本章介绍电子衍射基本原理与方法,下章将介绍衍衬成像原理与应用。
电子衍射的原理和 X 射线衍射相似,是以满足(或基本满足)布拉格方程作为产生衍射的必要条件。
两种衍射技术所得到的衍射花样在几何特征上也大致相似。
多晶体的电子衍射花样是一系列不同半径的同心圆环,单晶衍射花样由排列得十分整齐的许多斑点所组成。
而非晶态物质得衍射花样只有一个漫散得中心斑点(图 1,书上图10-1)。
由于电子波与 X 射线相比有其本身的特性,因此,电子衍射和 X 射线衍射相比较时具有下列不同之处:(1)电子波的波长比 X 射线短的多,在同样满足布拉格条件时,它的衍射角θ很小,约 10-2;而X 射线产生衍射时,其衍射角最大可接近°。
rad 90(2)在进行电子衍射操作时采用薄晶样品, 薄样品的倒易阵点会沿着样品厚度方向延伸成杆状,因此,增加了倒易阵点和爱瓦尔德球相交截的机会,结果使略为偏离布拉格条件的电子束也能发生衍射。
(3)因为电子波的波长短,采用爱瓦尔德球图解时,反射球德半径很大,在衍射角 θ 较小德范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
这个结果使晶体产生的衍射花样能比较直观的反映晶体内各晶面的位向,给分析带来不少方便。
(4)原子对电子的散射能力远高于它对 X 射线的散射能力(约高出四个数量级) ,这使得二者要求试样尺寸大小不同, X 射线样品线性大小位 10-3cm ,电子衍射样品则为10-6~10- 5cm ,且电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟,而X 射线以小时计。
电⼦衍射分析基础知识第⼀章电⼦衍射分析基础知识1-1 电⼦的波动性近代物理研究证实,微观世界中⼀切客体都具有粒⼦性与波动性,电⼦衍射是对运动具有波动性的有⼒证据。
为了把电⼦的粒⼦性与波动性这⼀对⽭盾统⼀起来,近代物理⽤德布罗意关系,把表征粒⼦性的能量E 和动能P 与描述波动性的波长与频率机即λ与ν联系起来,即E=h νP=h/λ式中h=6.6254×10-34焦⽿·秒是普朗克常数。
若电⼦的静⽌质量280101086.9-?=m g ,⽽电⼦的电荷e=4.8029×10-10静电单位。
若⼀束电⼦在电压V 作⽤下加速后,以速度u 均匀运动,则 E=ev=21m 0u 2 P=m 0u 电⼦波长λ为:Vem h02=λ对500电⼦伏以下的低能电⼦的电⼦波长:V26.12=λ(埃)⽬前透射电⼦显微镜中电压⾼达⼏千千伏或数百千伏,电⼦能量达数⼗千夫以上。
电⼦波长应加⼊相对论的修证后进⾏计算,即)21(2200c m eVV em h +=λ2120)21(cm eU +是相对论修正系数,经修正后电⼦波长为:)10979.01(26.126V V -?+=λV 为加速电压(伏),λ为电⼦波长(埃)。
1-2晶体对电⼦的散射1-2-1布拉格定律:晶体内部的质点是有规则的排列,由于这种组织结构的规则性,电⼦的弹性散射波可以在⼀定⽅向相互加强,除此以外的⽅向则很弱,这样就产⽣⼀束或⼏束衍射电⼦波,晶体内包含着许多族晶⾯的堆垛,每⼀族晶⾯的每⼀个晶⾯上质点都按同样的规律排列且这族晶⾯的堆垛间距是⼀个恒定的距离,称之为晶⾯间距d hkl 。
当⼀束平⾯单⾊波照射到晶体上时,各族晶⾯与电⼦束成不同坡度,电⼦束在晶⾯上的掠射⾓θ标记上述特征⼊射束的波前A 、B ,散射束的波前为A ’、B’,当第⼀层晶⾯的反射束Q A ’与透射束在第⼆层晶⾯反射束RB ’间的光程差RT SR +=δ,晶⾯间距d ,则θδsin 2d = 按波的理论证明,两⽀散射束相⼲加强的条件为波程差是波长的整数倍,即:λθn d =sin 2这就是布拉格定律或布拉格⽅程,其中n 为整数,晶⾯间距d 代表晶体的特征,λ为电⼦波长代表⼊射电⼦束的特征,θ为掠射⾓代表⼊射束与d 代表的晶⾯间的⼏何关系。
实验四选区电子衍射与晶体取向分析一、实验内容及实验目的1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。
2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。
二、选区电子衍射的原理和操作1.选区电子衍射的原理简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。
选区电子衍射的基本原理见图4-1。
选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。
使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。
实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。
选区范围不宜太小,否则将带来太大的误差。
对于100kV的透射电镜,最小的选区衍射范围约μm;加速电压为1000kV时,最小的选区范围可达μm。
图-1 选区电子衍射原理示意图1-物镜2-背焦面3-选区光栏4-中间镜5-中间镜像平面6-物镜像平面2.选区衍射电子的操作为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:(1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。
(2) 插人并选用尺寸合适的选区光栏围住被选择的视场。
(3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。
近代的电镜此步操作可按“衍射”按钮自动完成。
(4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。
(5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。
三、选区电子衍射的应用单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。
(1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=Lλ,可以进行物相鉴定。
【关键字】分析实验四选区电子衍射与晶体取向分析一、实验内容及实验目的1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。
2.选择适宜的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。
二、选区电子衍射的原理和操作1.选区电子衍射的原理简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。
选区电子衍射的基本原理见图4-1。
选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。
使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。
实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。
选区范围不宜太小,否则将带来太大的误差。
对于100kV的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。
图-1 选区电子衍射原理示意图1-物镜2-背焦面3-选区光栏4-中间镜5-中间镜像平面6-物镜像平面2.选区衍射电子的操作为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:(1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。
(2) 插人并选用尺寸适宜的选区光栏围住被选择的视场。
(3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。
近代的电镜此步操作可按“衍射”按钮自动完成。
(4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。
(5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。
三、选区电子衍射的应用单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。
电子衍射技术在材料结构分析中的应用导言:材料科学是一门研究材料组成、结构和性能的交叉学科。
在材料科学中,了解和分析材料的结构对于开发新材料和改善现有材料的特性至关重要。
电子衍射技术是一种广泛应用于材料结构分析的重要工具,它通过研究材料中电子的散射模式来揭示材料的晶体结构和缺陷。
一、电子衍射技术的原理电子衍射技术基于电子的波粒二象性,利用电子与物质相互作用的特性进行分析。
当高能电子束通过材料时,与材料中的原子发生散射,形成衍射斑。
通过收集和分析衍射斑的形状和分布,可以推断出材料的晶格结构和缺陷情况。
二、电子衍射技术在晶体学中的应用晶体学是研究晶体结构、晶体缺陷和晶体生长等问题的学科。
电子衍射技术在晶体学中有广泛的应用。
通过电子衍射技术,可以确定晶体的晶胞参数、晶格结构、原子排列和晶体缺陷等信息。
这些信息对于了解晶体的性质和行为非常重要,有助于研究材料的物理、化学和力学性质。
三、电子衍射技术在材料缺陷分析中的应用材料中的缺陷会影响材料的性能和行为。
电子衍射技术可以用于分析和表征材料中的缺陷。
通过研究电子衍射图样中的反射和散射斑的变化,可以确定材料中的晶体缺陷类型、缺陷密度和缺陷分布等。
这些信息对于材料的改性和优化非常重要。
四、电子衍射技术在纳米材料研究中的应用纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米尺度范围内。
电子衍射技术在纳米材料研究中有很大的应用前景。
通过电子衍射技术,可以观察和研究纳米材料中的晶体结构和相变过程。
此外,电子衍射技术还可以用于纳米材料的表面形貌分析和晶体生长过程研究。
五、电子衍射技术在材料组分分析中的应用材料的组分分析对于了解和控制材料的性能至关重要。
电子衍射技术可以通过分析衍射斑的位置和强度来确定材料中的相组成和比例。
这对于研究复杂的多相材料和合金材料具有重要意义,有助于理解材料的相变行为和材料的性能。
结论:电子衍射技术是一种重要的材料结构分析技术,其应用广泛且多样化。
测量晶体结构的物理实验技术详解晶体结构是物质内部排列的有序几何体,对于理解物质的性质和应用具有重要意义。
为了揭示和研究晶体结构,科学家们发展出了多种物理实验技术,包括X 射线衍射、电子衍射和中子衍射等。
本文将对这些技术进行详细的介绍。
一、X射线衍射技术X射线衍射技术是最常用的测量晶体结构的方法之一。
它利用X射线的波动性和探测器记录的衍射图案来推断晶体的周期性排列。
通过测量不同入射角度下探测到的衍射峰的位置和强度,可以推导出晶体中原子的相对位置和晶胞参数。
X射线衍射实验中,通常使用X射线发生器产生X射线束,然后将此束照射到样品上。
当X射线束穿过晶体时,由于晶体的周期性结构,出射的X射线将以特定的角度散射,形成衍射图案。
这些衍射峰的位置和强度与晶体结构的特征参数相关联。
二、电子衍射技术电子衍射技术是通过电子束与晶体相互作用产生的衍射现象来研究晶体结构的方法。
相比于X射线衍射技术,电子衍射技术能够研究更小尺寸的晶体,在无需复杂处理的情况下就能得到高分辨率的衍射图案。
电子衍射实验一般使用电子束枪产生电子束,然后通过透射电子显微镜照射在样品上。
样品中的晶体会散射入射电子束,形成衍射图案。
通过分析衍射图案的形状和强度分布,可以确定晶体的结构以及一些晶胞参数。
三、中子衍射技术中子衍射技术是利用中子与晶体相互作用产生的衍射现象来测量晶体结构的方法。
与X射线和电子相比,中子与晶体的相互作用更复杂,因此中子衍射技术在一些特定的研究领域中具有独特的优势。
中子衍射实验通常使用中子源产生中子束,然后通过样品中的晶体,中子将被晶体进行散射,形成衍射图案。
通过研究衍射图案的特征,我们可以了解晶体的结构、晶格常数以及原子间的相对位置。
总结测量晶体结构的物理实验技术包括X射线衍射、电子衍射和中子衍射等。
这些技术基于衍射现象,通过分析衍射图案的形状和强度来推导晶体的结构和特征参数。
每种技术都有其独特的优势和适用范围。
X射线衍射技术广泛应用于晶体结构研究中,其高分辨率和可靠性使其成为非常重要的工具。