振动测量相位分析基础知识
- 格式:ppt
- 大小:1.05 MB
- 文档页数:16
一、简谐振动有时域测试参数简谐振动中常用的参数为位移、速度、加速度、激振力、振幅和振动频率,其中前五个参数属于时域测试参数。
二、振动测试及信号分析的任务振动测试及信号分析主要有以下五个方面的任务:(1)验证振动理论和计算结果的准确性,也被称为实验验证或工程振动测试中的正问题。
(2)为改进结构优化设计提供充分的实验依据。
(3)查清外界干扰力的激振水平和规律,以便采取措施来减少或控制振动。
(4)检测诊断设备故障。
(5)振动控制。
三、压电式、涡流式及磁电式传感器的机电变化原理。
1、压电式传感器的机电变换原理某些晶体(如人工极化陶瓷、压电石英晶体等)在一定的方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生。
这种从机械能(力或变形)到电能(电荷或电场)的变换称为正压电效应。
而从电能(电场或电压)到机械能(变形或力)的变换称为逆压电效应。
因此利用晶体的压电效应,可以制成测力传感器。
在振动测量中,由于F=ma,所以压电式传感器是加速度传感器。
2、电涡流传感器的机电变换原理电涡流传感器是一种相对式的非接触传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的,主要应用于静位移的测量、振动位移的测量、旋转机械中检测转轴的振动测量。
3、电动式(磁电式)传感器的机电变换原理电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感应出电动势,因此利用这一原理而产生的传感器称之为电动式(磁电式)传感器。
它实际上是速度传感器。
四、选择振动传感器的原则选择拾振器类型时,要根据测试的要求(如要求测位移、或测速度、加速度、力等)及被测物体的振动特性(如待测的频率范围,估计的振幅范围等),应用环境情况(如环境温度、湿度、电磁场干扰情况等)结合各类拾振器本身的各项特性指标来考虑。
下列情况可用位移拾振器:(1)位移幅值特别重要时(例如,不允许某振动部件在振动时碰到别的物体,即要求振幅时)。
实验一 简谐振动幅值测量一、实验目的1.了解振动信号位移、速度、加速度之间的关系。
2.学会用各种传感器测量简谐振动的位移、速度、加速度幅值。
二、实验装置框图简谐振动的位移、速度、加速度幅值测量试验的实验装置与仪器框图见图1-1。
图1-1 实验装置框图三、实验原理在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信号的幅值。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。
设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :x = Bsin (ωt -ψ) (1)v =dtdy =ωBcos (ωt -ψ) (2) )sin(222ψ--==wt B w dtyd a (3)式中:B 一一位移振幅 ω—振动角频率 ψ—初相位X=B (4) V=ωB=2πfB (5)A=ω2B=(2πf)2B (6)振动信号的幅值可根据式(6)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。
也可利用动态分析仪中的微分、积分功能来测量。
四、实验方法1、安装激振器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。
2、连接仪器和传感器把加速度传感器安装在简支梁的中部,输出信号接到电荷放大器的输入端,并将电荷放大器的输出接到数采分析仪的1通道。
3、仪器参数设置打开数采仪器的电源开关,开机进入DAS2003数采分析软件的主界面,设置采样率(2kHz)、量程范围,输入加速度传感器的灵敏度。
打开一个窗口,分别显示三个通道的信号。
4、采集并显示数据调节扫频信号源的输出频率,使梁产生振动。
分别调整电荷放大器为加速度、速度、位移状态,同时在窗口中读取当前振动的最大值(位移、速度、加速度)。
5、计算数据与实验数据比较按公式计算位移、速度或加速度值,并与实验数据比较。
机器振动相位分析相位是同频率振动之间,振动与激励之间,或振动与触发参考之间的时间关系,用角度单位表示。
一个振动周期或轴旋转一周为360度或2派。
因此,振动相位 = (振动时间差 / 周期)x 360度两个振动之间的相位差为相对相位。
频率相同,相位关系固定;频率不同,相位不固定或者无相位关系。
振动与触发之间的相位为绝对相位。
对旋转机器,在轴上做参考标记,相位传感器产生没转一次的脉冲信号,振动传感器测取的振动信号与此脉冲信号的相位差即绝对相位。
利用触发参考,不仅可以测量转频1X振动的相位,还可以测量谐频2X,3X,4X……的相位;一个转频周期有多个整谐频周期,谐频振动与触发参考有稳定的相位关系。
因此,可以用一个触发参考测量所有谐频的绝对相位。
用绝对相位确定的轴振动位移的相位角,就是轴上的振动高点,或称转子挠曲点。
触发信号发生至振动位移最大所需的延时,等同于振动高点转到振动位移传感器之下所需的时间,这个时间间隔与周期之比乘以360度就是轴振动相位角。
因此,先将触发参考对准相位传感器,再按旋转方向转动一个相位角,这时振动传感器对准的轴位置就是高点。
振动的根源是力或激励,交变的力产生振动,振动的频率与力的频率相同。
振动与激励的相位差反映机械系统的特性,称为机械相位滞后角,即振动滞后于激励的角度。
在转子动平衡中,通过在转子上加标定重量(试重)可以确定不平衡(激励)的大小和角位置(重点),从而确定平衡配重和角度(轻点),使转子达到平衡。
轴上高点与重点之间的角度即是转子的相位滞后角。
相位的测量相位的测量方法有很多种,早期用振动信号触发频闪灯的方法,现在主要用轴上标记(反光带或键槽)产生触发参考脉冲信号的方法,这两种方法都要都需要轴上做参考标记,可利用数字矢量滤波或数据采集器进行测量。
绝对相位测量也是动平衡所必须具备的。
而对于两个或多个振动之间的相位测量为相对测量,不需要做轴上参考标记。
相对相位可以比较两个振动的波形相位差,或利用双通道频谱分析仪做传函分析,传函的相频数据可以得到两个振动多个频率的相位差。
一、名词和术语1. 振动的基本参量:幅值、周期(频率)和相位机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。
振动通常以其幅值、周期(频率)和相位来描述,它们是描述振动的三个基本参量。
a.幅值:表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。
机器运转状态的好坏绝大多数情况是根据振动幅值的大小来判别的。
针对机械设备的振动信号,选择有效的特征参数指标,是实现状态监测的关键,常用的特征参数包括:有量纲参数: 均方根(RMS),峰值(Peak),峰峰值(Peak-Peak)。
均方根(RMS):表征信号的能量,其定义为:均方根是对机组进行状态监测最重要的指标,由于均方根振动信号的能量,当机组正常运转时,振动信号的能量处于比较稳定的状态,当机组某个零部件出现异常后,信号的能量增加,当增知到超过设定阅值时,就可以判断出机组出现异常、对于速度信号的评估,通常用均方根表示。
均方根的稳定性和趋势性较好,许多标准都采用均方根来作为状态监测的参数.ISO 10816是针对通用机械的状态监测标准,采用速度信号的RMS作为特征参数。
VDI 3834作为唯一一个针对风电机组的振动标准,采用速度和加速度的RMS作为监测指标.峰值是指某段采集的信号中的最高值和最低值,其中,最高值表示为Peak(+),最低值表示为Peak(-),由于加速度信号主要表征受力的大小,因此通常用峰值来表征加速度的大小.峰峰值(Peak-Peak)是指某段采集的信号中,最高值和最低值之间的差值,它是峰值(+)和峰值(-)之间的范围,由于峰峰值描述的是信号值的变化范围大小,因此对于位移信号,通常用峰峰值表示。
峰-峰值等于正峰和负峰之间的最大偏差值,峰值等于峰-峰值的 1/2。
只有在纯正弦波的情况下,均方根值才等于峰值的0.707 倍,平均值等于峰值的0.637倍。
而平均值在振动测量中一般则很少使用。
分析频率/采样点数/谱线数的设置要点1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。
根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。
2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M 即:M=Fm/ΔF 所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。
例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024=210谱线数M=N/2.56=1024/2.56=400条关于现场故障诊断要注意搜集的信息最近论坛上很多朋友发送了一些案例、求助等,对于一个现场诊断人员来说,似乎有很多信息没有注意到,或者在求助的时候没有说明,给诊断工作带来很多困难。
下面我就现场诊断人员应该注意和掌握的信息作一个简单的个人总结,不是针对某一个设备,而是针对尽可能多的设备来分析,建议大家在下现场的时候或进行求助的时侯,尽可能多地描述自己得到的信息。
1.设备基本信息①设备的型号、名牌参数:如电机级数、电压、电流;气压机的转速、临界转速等。
②设备的基本机构、性能、用途:如基础是混凝土还是钢制框架;转子是否悬臂、单级还是多级;叶轮叶片数目;是否变频调速;工作介质、密封形式等。
③工艺参数:如工艺介质、流量、压力、温度;润滑油类型、油压、温度等。
2.设备轴承形式①滚动轴承形式:深沟球轴承、角接触轴承、圆柱棍子轴承、圆锥棍子轴承、纯轴向推力轴承;滚动体是单列还是双列。
机械振动学基础知识振动的相位与相位差的意义机械振动是物体在受到外力作用下产生的周期性运动。
在振动的过程中,相位和相位差是两个重要的概念,对于理解振动的特性和特征至关重要。
本文将介绍振动的相位和相位差的概念及其在机械振动学中的意义。
相位是描述振动状态的一个重要参数,它表示一个振动物体在一个周期内所处的位置。
在正弦振动中,我们通常用角度来表示相位,其范围为0到360度。
当物体从最大位移向负方向移动时,其相位逐渐增加,当再次到达最大位移时,相位为360度,即一个完整的周期。
相位的改变反映了振动物体在不同时间点的位置,可以帮助我们更清晰地了解振动的状态。
相位差是指振动系统中不同振动物体之间的相位关系。
当两个振动物体的相位差为0时,它们的振动状态完全一致,即两者的振动状态完全相同;当相位差为180度时,它们的振动状态完全相反,即一个在正向振动,另一个在负向振动;当相位差为90度或270度时,它们的振动状态存在一定的偏差,但仍然存在一定的关联性。
通过对相位差的分析,我们可以判断不同振动物体之间的运动状态,帮助我们进一步理解振动系统的特性。
在机械振动学中,相位和相位差的意义不仅在于描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。
通过对振动的相位和相位差进行精确的测量和分析,我们可以确定振动系统的固有频率、共振频率以及其它重要的动态参数,为后续的振动控制和优化提供重要的参考依据。
因此,在研究机械振动时,我们需要充分理解振动的相位和相位差的概念,善于运用它们来分析和解决振动系统中的实际问题。
总之,相位和相位差是机械振动学中非常重要的概念,它们不仅帮助我们描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。
只有深入理解和熟练运用相位和相位差的概念,我们才能更好地理解和控制振动系统的运动规律,为工程实践和科学研究提供更可靠的支持。
希望本文的介绍能够对读者有所帮助,激发大家对机械振动学的兴趣,促进振动领域的进一步发展与应用。
振动分析参考中心一、不平衡1、静态不平衡特征:径向1X波峰(垂直或水平方向上)。
如果机器失去平衡我们将得到频率等于转速的正弦时域波形,在转速频率(1X)处有一个高峰。
最简单的不平衡模型是将转动轴的重心简化到一个点。
这种不平衡称为静态不平衡,因为即使是在旋转体不旋转的情况下也能够表现出来,如果将其放在没有摩擦的轴承中间,重心位置将自动回转到最低位置。
静态不平衡将会在旋转轴的两个承载轴承上产生一个1X频率的作用力,作用于两个轴承上的作用力的方向总是相同。
从这两个轴承上采集到的振动图1.1 静态不平衡信号同相。
2、偶不平衡特征:径向1X波峰(垂直或水平方向上)。
如果机器出现不平衡我们将得到频率等于旋转速度的正弦时域波形,频谱上在转速频率(1X)处会产生一个高峰。
一个旋转体如果存在偶不平衡,就有可能形成静态平衡(放置在无摩擦的轴承上旋转体看起来好象刚好平衡)。
但当旋转体发生旋转的时候,就会在它的两个承载轴承上产生离心作用力,并且它们的相位相反。
图1.2 偶不平衡3、垂直安装的机器特征:径向1X波峰(水平方向上)。
当在径向(水平或切线方向)测量时,频谱又将显示出强一倍频(1X)波峰。
为了从泵的不平衡中分离出马达不平衡,可能需要将两者拆解开来,单独使马达旋转,检测其1X频谱。
如果1X处的振幅依然很高,那么故障就出在马达上,否则故障就出在泵上面。
图1.3 垂直安装的机器4、悬吊式机器特征:轴向和径向上高强度1X波峰(垂直或水平方向上)。
在外悬或悬臂式机器中,可以检测到在水平、垂直和轴向上的高幅1X振动。
我们能够检测到高幅1X振动是因为不平衡使轴发生弯曲,使得轴承座在轴向发生移动。
常见的悬吊式旋转体有短联轴器泵、轴向排风的风扇和小型涡轮机。
图1.4 悬吊式机器二、不对中1、平行不对中特征:径向2X波峰,径向1X低幅波峰(垂直或水平方向上)。
如果不对中轴的中心线平行但不共线,这样的不对中称为平行不对中(或相离不对中)。