(北师大版)初中数学《同底数幂的除法》说课稿(2)
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
北师大版七年级数学下册《同底数幂的除法》评课稿一、课程背景和目标《同底数幂的除法》是北师大版七年级数学下册的一篇重要内容。
本课通过引导学生探索同底数幂的除法规则,培养学生对除法的理解和运用能力。
课程目标包括: - 理解同底数幂指数相减的原理; - 掌握同底数幂相除的运算方法; - 运用正确的除法规则解决实际问题。
二、教学内容和方法1. 教学内容本节课主要内容包括: - 同底数幂指数相减的原理; -同底数幂相除的运算方法。
2. 教学方法(1)“导入” 激发学生的学习兴趣和主动性,可以通过提问或生活实例等方式,引入同底数幂的除法概念。
(2)“探究” 指导学生自主探究同底数幂的除法规律,可以通过小组合作、讨论等形式,引导学生思考、发现和归纳。
(3)“讲解” 给出同底数幂除法规则的准确定义和解题方法,通过板书、示意图等形式,帮助学生理解和记忆。
(4)“练习” 设计一定数量和难度的练习题,让学生在课堂上通过个人、小组等形式进行练习,巩固所学知识。
(5)“提高” 在解题过程中引导学生思考,提高认识,培养学生的数学思维、分析问题和解决问题的能力。
(6)“归纳” 教师对本节课的重点知识进行概括和总结,引导学生归纳记忆。
1. 教学步骤(1)导入通过提问或以生活实例的方式引入同底数幂的除法概念,激发学生的学习兴趣和思考。
(2)探究学生分组讨论,自主探究同底数幂的除法规律,发现同底数幂的除法可以通过对指数进行相减来实现。
教师鼓励学生互相交流和探讨,引导他们找到规律。
(3)讲解教师给出同底数幂的除法规则的准确定义和解题方法。
通过板书、示意图等形式,帮助学生理解和记忆。
(4)练习设计一定数量和难度的练习题,让学生在课堂上通过个人、小组等形式进行练习,并及时纠正他们的错误。
(5)提高在解题过程中引导学生思考与提高,鼓励他们尝试不同的解题方法,培养他们的数学思维和解决问题的能力。
(6)归纳教师对本节课的重点知识进行概括和总结,引导学生归纳所学知识,加深记忆。
七年级数学下册第一章整式的乘除1.3同底数幂的除法第2课时教案新版北师大版第一章整式的乘除3同底数幂的除法(第2课时)一、学生起点分析学生的知识技能基础:在七年级学习有理数的乘方时学生已经会用科学记数法表示大于10的数,在上一课时同底数幂除法的运算结果中会出现了一些绝对值较小的数据,学生也理解了负整数指数幂的意义,这就为本课时将科学记数法的应用范围拓广到较小数据奠定了知识基础.二、教学任务分析教科书在学生原有的知识和经验基础上,提出了本课时的具体学习任务:会用科学记数法表示小于1的正数,借助自己熟悉的事物感受绝对值较小的数据.这仅仅是这堂课的近期目标,而本课教学还应服务于数学教学的远期目标“建立数感,学会从数学的角度发现、提出问题和解决问题,获得分析和解决问题的一些基本方法,综合运用数学知识解决简单的实际问题,增强应用意识”同时在学习中应力图达成有关情感态度目标.为此,本节课的教学目标是:1.知识与技能:会用科学记数法表示小于1的正数,能进行它们的乘除运算,并将结果用科学记数法表示出来.2.过程与方法:借助自己熟悉的事物感受绝对值较小的数据,进一步发展学生的数感,体会估测微小事物的方法与策略.3.情感与态度:了解数学的价值,体会数学在生活中的广泛应用.教学重点:用科学记数法表示小于1的正数,借助熟悉的事物感受绝对值较小的数据教学难点:用科学记数法表示小于1的正分数,估测微小事物的策略三、教学过程设计本课时设计了七个教学环节:复习回顾、交流引入、巩固落实、感受数据、反馈拓展、课堂小结、布置作业.第一环节复习回顾2.在用科学记数法表示数据时,我们要注意哪些问题?活动目的:这一环节的目的是引导学生回顾如何用科学记数法表示大于10的数以及应注意的问题,为下面类比表示小于1的正数奠定基础.活动的注意事项:活动1布置为课前作业,学生比较容易得到1米=1910 纳米,活动2学生可能能说出科学记数法的表示形式a ×10n ,教学时主要关注学生是否理解其中a 与n 的取值范围:1≤a <10,n 为正整数,以及n 与小数点移动位数之间的关系第二环节交流引入活动内容:1. 1纳米= 米?这个结果还能用科学记数法表示吗?2. 你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?生活中你还见到过哪些较小的数?请把你找到的资料和数据与同伴交流3.你能用科学记数法表示这些数吗?活动的注意事项:活动1和2也已经布置为课前作业,活动1中要用到上节课关于负整数指数幂的知识,应表示为1纳米= 91011?米(=0.000 000 001米)=10000000001米=9101米=910-米=1910-?米,学生可能只计算出了结果910-但没有用科学记数法表示,也应予以肯定,可以追问“这个结果是否符合科学记数法的形式呢”引导学生进一步思考.活动2让学生课前经历查找数据的过程,学生查到的数据可能是不一样的,课上应注意给学生提供组内展示和全班交流的空间与时间.这里提供一些参考答案:洋葱表皮细胞的大小,直径大约是0.001毫米左右;照相机的快门时间与相机的类型有关,单反相机的快门时间有的是1001秒,有的是8001秒;中彩票头奖的可能性与彩票类型有关,双色球头奖概率为117210881,大乐透头奖概率为214257121,七乐彩头奖概率为20358001,七星彩头奖概率为100000001等;头发的直径儿童的大约是0.04毫米,成人大约是0.07毫米.教师还可以根据情况再补充一些绝对值特别小的数据,例如一个氧原子的质量0.000 000 000 000 000 000 000 000 026 57kg ,增加学生的体验.在学生已经充分感受到这些绝对值较小数据的广泛存在和书写的复杂之后,他们可能产生简便地表示这些数据的强烈愿望,这样活动3的进行就顺理成章.活动3的教学可以按照下面的步骤进行:① 先引导学生体会这些数据都在0到1之间,也就是说它们都是小于1的正数. ② 这里的数据有的是用小数呈现的,有的是用分数呈现的,对学生而言用科学记数法表示0到1之间的小数更容易思考一些,因此上课时可以先解决小数的表示问题.有了前面用科学记数法表示大于10的数的经验,这里可以完全放手让学生自主探索,再通过全班交流得到科学记数法表示小于1的正数的正确方法.教师应关注:学生在用科学计数法表示时是否注意到a 和n 的取值范围、是否能理解n 与小数点移动位数间的关系.③ 教材中并没有出现用科学记数法来表示0到1之间分数的题目,一方面,用科学记数法表示分数对学生而言比较困难;另一方面,0到1之间的分数在书写上没有小数那么复杂.但是生活中很多绝对值较小的数据都是用分数表示的,而且学生在用科学记数法表示完小数后自然会产生表示分数愿望,因此建议在课上也将这个问题予以解决.这里可以让学生先独立思考,尝试表示.学生可能会出现一些错误,例如8001,学生可能会出现21081-?甚至2108-?等错误,可以引导学生先将分数转化为小数,再用科学记数法表示,从而解决这一难题.得到正确的答案后还应将它与错误的结果进行对比、加深认识,帮助学生养成反思的习惯.④ 部分难计算的数据还可以让学生利用计算器来帮助计算,一些特别小的数据在计算器上呈现的结果就已经采用了科学记数法,教学时应该充分利用这些资源,让学生体会科学记数法的简便性和广泛运用.第三环节巩固落实活动内容:1.用科学记数法表示下列各数:0.000 000 000 1= 0.000 000 000 002 9= 0.000 000 001 295=2. 下面的数据都是用科学记数法表示的,请你用小数把它们表示出来:7×10-5=1.35×10-10=2.657×10-16=活动目的:两组题目通过正反两个方面的运用来巩固学生对科学记数法的理解,为了避免让学生只对这些无背景的数据进行简单改写,本环节的题量不大,在后面的环节中还给学生提供了较多的具有实际背景的数据再进行巩固练习.活动的注意事项:活动1教学时应关注学生是否还存在困惑,及时解决.活动2让学生从逆向思维的角度思考数的两种表示之间的关系,从而进一步体会科学记数法的优越性.教学时应并引导学生再次体会n 与小数点移动的位数之间的关系.特别的,应注意引导学生区别7×10-5与7-5, 加深学生对科学记数法的理解.第四环节感受数据活动内容:1. PM2.5是指大气中直径小于或等于2.5μm 的颗粒物,也称为可入肺颗粒物.虽然他们的直径还不到人的头发丝粗细的20 1,但它们含有大量的有毒、有害物质,并且在大气中停留的时间长、输送距离远,因而对人体健康和大气环境质量有很大的危害.假设一种可入肺颗粒物的直径约为2.5μm ,相当于多少米?多少个这样的颗粒物首尾连接起来能达到1m ?与同伴交流2. 估计1张纸的厚度大约是多少厘米.你是怎样做的?与同伴交流活动目的:活动1提供给学生一个有趣的社会环境背景,让他们体会较小的数对人类生活也可以产生重大的影响,同时通过进行乘除运算,加深他们对科学记数法的理解.活动2目的是让学生借助熟悉的事物感受绝对值较小的数,进一步发展数感,形成估测微小事物的方法和策略.活动注意事项:活动1教学时,应注意引导学生品味它的实际背景,计算时,学生可能出现下面两种不同的计算方法,可以板书进行对比,加深他们对科学记数法表示方法和简便性的理解:用原数计算用科学记数法表示后再计算2.5μm=2.5610-?m ,1÷(2.5610-?)=4510-?(个)活动2由于受测量器械的限制,无法直接测量1张纸的厚度,教学时可放手给学生,先让他们分组讨论测量方法,再操作实验,最后在全班范围内交流各自的作法:学生可能会先数100张(或其他整数)的纸,再测量总厚度来计算估计一张纸的厚度;也可能会先量出1厘米厚(或一整本书)的纸,再数张数来计算估计一张纸的厚度.这样,通过交流使学生进行反思和提升,形成估测微小事物的策略.第五环节反馈拓展活动内容:1.基础练习:(1)用科学记数法表示下列各数,并在计算器上表示出来:0.000 000 72; 0.000 861; 0.000 000 000 342 5(2)1个电子的质量是:0.000 000 000 000 000 00 000 000 000 911g ,用科学记数法表示为 g ;冠状病毒的直径为1.2×102 纳米,用科学记数法表示为______________米.2.变式练习:10-g,用小数表示为;每个水分子的直径是(1)每个水分子的质量是3×2610-m,用小数表示为 .4×10(2)拓展延伸:如果一滴水的质量约为0.05g,请根据(1)中提供的数据,回答下列问题:①一滴水中大约有多少个水分子?请用科学记数法表示 .②如果把一滴水中的水分子依次排成一列(中间没有空隙),能排多少米?请用科学计数法表示 .活动目的:这里的题目大多都提供了贴近生活的情境,让学生将数据的感受和表示结合起来,实现对本节课所学知识的巩固和拓展.活动的注意事项:学生可能会出现一些错误,例如,活动1中的第(2)题第二空可能会忽视单位的换算,正确答案应为1.2×10-7米.针对错处,教师可以让学生分析自己的思考和计算过程,自己反思、订正,加深理解和认识.第六环节课堂小结活动内容:1.这节课你学到了哪些知识?2.用科学记数法表示小于1的正数与表示大于10的数有什么相同之处?有什么不同之处?3.用科学记数法表示容易出现哪些错误?你有哪些经验?与同伴交流4.在估测微小事物时你用到了哪些方法和策略?活动目的:通过问题串引导学生回顾本节课所学的知识与方法,对比表示小于1的正数与表示大于10的数的异同可以让学生更好地理解和掌握科学记数法.活动的注意事项:鼓励学生畅谈自己学习体会,分享学习经验,增强学生学习数学的兴趣与信心.第七环节布置作业1.完成课本习题1.52.拓展作业:阅读课本“读一读”,你想了解更多的有关纳米技术或微小世界中的有趣问题吗?请你查阅资料,制作成手抄报,一周后带来与同学分享.四、教学设计反思:1. 把知识的学习与学生的需求紧密结合在这节课中,课前先布置了预习作业让学生在自己熟悉的生活场景中查找绝对值较小的数据,在记录的时候学生会充分感受到这些数据书写的复杂性,从而自己产生寻求简便表示方法的强烈愿望,这时课上再引入科学记数法就顺理成章了.这样的设计巧妙地把科学记数法这一数学知识的学习与学生自己的需求紧密的结合起来,提高了他们的学习兴趣,使学生了解了数学的价值,体会了数学与生活之间的密切联系.在教材中并没有出现用科学记数法来表示0到1之间分数的题目,但是学生查找的数据中很多都是用分数表示的,而且学生在用科学记数法表示完小数后自然会产生表示分数愿望,因此教学设计中也顺应学生的需求,把这一难点知识在课上予以解决.像这样根据学情适当调整教学内容,把知识的学习与学生的需求紧密结合,才能真正的激发学生的兴趣,调动学生的积极性.2. 创设丰富的情景,激发学习的兴趣七年级的学生大都十二三岁,这个年龄的孩子对周围世界和社会环境中的问题具有越来越强烈的探究兴趣,因此在教学设计中尽量避免了让学生进行单纯的数据计算,而是充分挖掘生活中与数据有关的素材,为他们创设了丰富的情境,把数据置于学生熟悉的、感兴趣的背景中,从而将数据的感受和表示结合起来,使他们体会到所学内容与现实世界的密切联系,加深了对数据实际意义的理解.另外,在引入环节中,如果能让学生将课前收集的资料,用图片或课件的形式在课上展示,给学生更强烈的视觉冲击,会更好的激发学生的探究兴趣.。
北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。
本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。
教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。
但是,对于同底数幂的除法运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。
三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。
2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:同底数幂的除法法则。
2.难点:同底数幂的除法运算的灵活运用。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。
2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。
学生在小组内进行练习,教师巡回指导。
4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。
5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。
同底数幂的除法说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“同底数幂的除法”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“同底数幂的除法”是初中数学整式运算中的重要内容,它是在学习了同底数幂的乘法的基础上进行的。
同底数幂的除法法则是整式除法的基础,也是后续学习整式乘除混合运算、分式运算的重要基础。
本节课的教材内容主要包括同底数幂的除法法则的推导和应用。
通过对具体例子的计算和分析,引导学生归纳总结出同底数幂的除法法则,然后通过练习巩固法则的应用。
二、学情分析在学习本节课之前,学生已经掌握了同底数幂的乘法法则和幂的乘方法则,具备了一定的幂运算的基础。
但是,对于同底数幂的除法运算,学生可能会在理解法则的推导过程和应用法则进行计算时遇到一些困难。
此外,学生的抽象思维能力和逻辑推理能力还有待进一步提高,在学习过程中需要教师通过引导和启发,帮助他们逐步掌握新知识。
三、教学目标1、知识与技能目标(1)理解同底数幂的除法法则,并能熟练运用法则进行计算。
(2)掌握零指数幂和负整数指数幂的意义,并能进行相关计算。
2、过程与方法目标(1)通过对同底数幂除法法则的推导,培养学生的观察、分析、归纳和概括能力。
(2)通过运用法则进行计算,提高学生的运算能力和数学思维能力。
3、情感态度与价值观目标(1)让学生在自主探索和合作交流中,体验数学学习的乐趣,增强学习数学的信心。
(2)培养学生严谨的治学态度和勇于创新的精神。
四、教学重难点1、教学重点同底数幂的除法法则的推导和应用。
2、教学难点(1)对同底数幂的除法法则的理解,特别是底数不为零的条件。
(2)零指数幂和负整数指数幂的意义的理解。
五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用讲授法、启发式教学法和练习法相结合的教学方法。
通过讲授法,让学生了解同底数幂的除法法则的推导过程;通过启发式教学法,引导学生思考问题,培养学生的思维能力;通过练习法,让学生巩固所学知识,提高运算能力。
北师大版七年级数学下册《1.3 第1课时同底数幂的除法》说课稿一. 教材分析《1.3 第1课时同底数幂的除法》是人教版七年级数学下册的一节重要课程。
本节课的主要内容是让学生掌握同底数幂的除法法则,并能够运用该法则解决相关问题。
教材通过引入实例,引导学生发现并总结同底数幂的除法法则,进而提高学生的数学思维能力和解决问题的能力。
二. 学情分析根据对七年级学生的了解,他们在学习本节课之前已经掌握了同底数幂的乘法,有了一定的数学基础。
但是,对于幂的除法,他们可能还存在一些困惑和误解。
因此,在教学过程中,我需要关注学生的学习情况,及时解答他们的疑问,并帮助他们澄清错误观念。
三. 说教学目标1.知识与技能目标:学生能够理解同底数幂的除法法则,并能够运用该法则进行计算。
2.过程与方法目标:学生通过观察实例,总结同底数幂的除法法则,培养学生的数学思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂讨论,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:同底数幂的除法法则的推导和应用。
2.教学难点:理解同底数幂的除法法则,能够灵活运用该法则解决实际问题。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导法和实践法相结合的方法。
通过实例引入,引导学生观察和思考,进而总结出同底数幂的除法法则。
同时,我会鼓励学生进行实际操作,通过计算练习来巩固所学知识。
六. 说教学过程1.导入:通过一个具体的实例,如计算2^3 ÷ 2^2,引导学生思考同底数幂的除法应该如何计算。
2.探究:让学生分组讨论,观察和分析实例,引导学生发现同底数幂的除法法则。
3.讲解:引导学生总结同底数幂的除法法则,并进行解释和讲解。
4.练习:布置一些相关的计算练习题,让学生进行实际操作,巩固所学知识。
5.应用:通过解决实际问题,让学生运用同底数幂的除法法则,提高学生的解决问题的能力。
七. 说板书设计板书设计要简洁明了,能够突出同底数幂的除法法则。
同底数幂的除法说课稿
一、说教材:
1、教材地位和应用:
《同底数幂的除法》是人教版八年级数学第15章第三节的第一节课的内容。
在此前,学生通过学习,已经掌握了《同底数幂乘法》,《幂的乘方与积的乘方》,这为进一步学习《同底数幂的除法》做了很好的铺垫。
《同底数幂的除法》是整式的乘法和幂的意义的综合应用,是整式的四大基本运算之一,这节课是以培养学生学习能力为重要内容,对进一步培养学生的逻辑思维能力有着重要意义。
2、教学目标:
知识目标:能说出同底数幂除法的运算性质,并会用符号表示;会正确运用同底数幂除法性质进行运算,并说出每一步运算的依据;经历探索同底数幂除法运算性质的过程,并进一步感受归纳的思想方法。
能力目标:经历探索同底数幂除法运算法则的过程,进一步感受归纳的思想方法,发展归纳和有条理地表达和推理的能力;通过推导同底数幂除法法则的过程,培养学生类比、归纳、猜想、推理的数学思想。
情感目标:经历探索同底数幂的除法运算法则的过程,获得成功的体验,积累数学经验;培养学生合作交流的能力,让学生在解决问题中体验数学来自实践中的发展特点。
3、重点、难点:
同底数幂的除法法则的理解与运用是本节课的教学重点,教学突破在于同底数幂除法法则的推导与一般意义上的除法运算上的区别,避免出现的错误。
采用由特殊到一般的教学方法,结合学生的自主探索能力,应该能够很好的解决这样的问题。
二、说教法、学法:
针对这节课的重难点,围绕新课程理念所强调的让学生亲身经历和体验数学知识的形成过程。
因此,在“教”的设计上,结合学生的实际,我采用了教师启发、总结、点拔和补充的方法,充分发挥学生的主观能动性。
在“学”的设计上,则注重学生自主探索,合作交流,将学习内容设计成探究活动过程,使学生在亲身尝试、讨论与交流的过程中,让课堂更开放、学习更轻松、热情更高涨,并能正确运用同底数幂的除法法则解决问题。
三、说教学过程:
教学流程设计的总体思路:
情境引入——探求新知——应用新知——深化目标——课堂训练。
、创设情境,提出问题
1本课通过U盘的存储量引入新课,这样既可以激发学生的好奇性和学习兴趣,又可以将数学生活化,体现了数学的实用性。
2.提出问题,引出新知
问题引入::一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?
【教师活动】组织学生独立思考完成,然后先组内交流(6人小组),接着再全班交流,鼓励学生积极探索,应用数学转化的思想化陌生为熟悉,鼓励学生算法多样化,同样强调算理的叙述.
【学生活动】踊跃发言,利用除法与乘法的互逆关系,求出216÷28=28=256 [生]1.同底数幂相乘,指数相加,底数不变.即:a m·a n=a m+n(m、n是正整数).
2.移动存储器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=216K.所以它能存储这种数码照片的数量为216÷28.
[生]216、28是同底数幂,同底数幂相除如何计算呢?
(列出式子,板书课题《同底数幂的除法(1)》)
(通过对课本例题进行“再创造”,以测量生活问题为背景,引出数学问题。
既尊重课本内容又符合加强数学与现实联系的要求。
在辅以幽默,启发的语言调动起学生的兴趣)
导向深入,揭示规律
根据幂的定义:,学生进行自主合作学习。
做一做
(1)106÷103(2) a7÷a4(3) a100÷a 70(a≠0)
(师)你是如何思考的?重点强调幂的定义,强调乘方与幂的联系。
师生共同验证。
(二)、自主学习
学生活动:对照学习目标完成自己同桌研究讨论,并试着推导得出结论.师生共同总结:
教师把结论写在黑板上.
请同学们试着用文字概括这个性质:
【公式分析与说明】提出问题:在运算过程当中,除数能否为0?
学生回答:不能.(并说明理由)
归纳同底数幂的除法的除法法则:底数不变,指数相减。
(板书法则)
由此得出:同底数幂相除,底数 a≠0.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出: am÷an=am-n(a≠0,m、n 都是正整数,且m>n )
【设计意图】:通过对比、提升、小结三个环节来得到同底数幂除法法则,使学生感受由特殊到一般的规律,归纳出同底数幂的除法运算法则,并运用幂的意义加以说明,在此过程中学生进一步体会了幂的意义,发展了归纳、符号演算等推理能力和有条理的表达能力。
1.提问:在公式要求 m,n都是正整数,并且m>n,但如果m=n或m呢?
2.实例研究:计算:32÷32 103÷103 a m÷a m(a≠0)
3.得到结论:由除法可得:32÷32=1 103÷103=1 a m÷a m=1(a≠0)
利用a m÷a n=a m-n的方法计算.
32÷32=32-2=30 103÷103=103-3=100 a m÷a m=a m-m=a0(a≠0)这样可以总结得a0=1(a≠0)
于是规定:a0=1(a≠0)即:任何不等于0的数的0次幂都等于1.
最终结论:同底数幂相除:a m÷a n=a m-n(a≠0,m、n都是正整数,且m≥n). [生]这样的话,我们学习的同底数幂的除法的运算法则就可以扩展到: am÷an=am-n(a≠0,m、n都是正整数,且m≥n )
【设计意图】通过学生独立思考、计算,小组合作探究得出任何非0数的0次幂都是1。
在探索的过程中,学生不仅体验到成功的乐趣,并且感受到用已有的知识经验,解决所遇到的问题。
同时也将结论进一步规范:同底数幂相除:am ÷an=am-n(a≠0,m、n都是正整数,且m≥n)。
反馈展示
1、一轮基础抢答,这样可以反馈学生对本节课的基础掌握情况进行摸底。
2、安排了一轮必做题,通过小组安排做题,到批改。
全部由小组为单位完成,这样最大的锻炼了学生的能力,体现了学生为主的生本课堂模式。
3、接着安排了个砸金蛋的游戏,在调动学生的学习兴趣的同时激起了小组学习的竞争高潮。
通过题目对知识进行了深化。
【设计意图】:必做题是巩固本节基本要求,选做题共学有余力学生做,以提高学生的能力。
体现了“人人学习有价值的数学,不同的人在数学上得带不同的发展”的思想。
四、课堂小结
【教法说明】强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.。