雷电的电气参数
- 格式:ppt
- 大小:1.10 MB
- 文档页数:16
雷电知识简介1.1 雷电的产生雷电是一种自然现象。
它是由雷云产生的。
形成雷云必须具备以下三个条件:1、空气中含有足够的水蒸气;2、大气中的空气形成温度差,以使潮湿的空气形成强大的上升气流;3、没有破坏或防碍强烈而持久的上升气流形成的因素。
大多数雷电放电发生在云间或云内,只有小部分是对地发生的。
在对地的雷电放电中,雷电的极性是指雷云下行到地的电荷的极性。
根据放电电荷量进行的多次统计,90%左右的雷是负极性的。
1.2 防雷区的划分1.2.1 防雷区的划分将需要保护的空间划分为不同的防雷区,以规定各部分空间不同的电磁环境(雷电电磁厂的危害程度),同时指明各区交界处的等电位联结点的位置。
图1-1 雷电分区保护示意图以在其交界处的电磁环境有明显改变作为划分不同防雷区的特征。
LPZ0A:本区内各物体可能遭受直接雷击,电磁场没有衰减;LPZ0B:本区内各物体不可能遭受直接雷击,电磁场没有衰减;LPZ1:本区内各物体不可能遭受直接雷击,电磁场有可能衰减;LPZ2:本区内各物体不可能遭受直接雷击,电磁场有进一步的衰减一个被保护的区域,从电磁兼容的观点来看,由外到内可分为几级保护,最外层是0级,是直接雷击区域,危险性最高,越往里,则危险程度越低。
过电压主要是沿线窜入的,保护区的交界面通过外部防雷系统、钢筋混凝土及金属罩等构成的屏蔽层而形成,电气通道以及金属管道等则经过这些交界面。
图3-1是雷电保护区域划分的示意图。
SPD(Surge Protect Device):浪涌保护器的英文简称,公司内也叫做防雷器,用于保护设备接口免受雷击过电压和过电流的损坏。
在本文中,统一将SPD称为防雷器。
1.3 雷电参数简介雷电放电涉及到气象、地形、地质等许多自然因素,有一定的随机性,因而表征雷电特性的参数也带有一定的统计性质。
在防雷设计中,我们对雷暴日、雷电流波形、幅值等参数比较关心。
1.3.1 雷暴日为了表征雷电活动的频率,采用年平均雷暴日作为计算单位。
雷电参数
————————————————————————————————作者:————————————————————————————————日期:
雷电参数
雷电参数是防雷设计的重要依据之一。
雷电参数系指雷暴日、雷电流幅值、雷电流陡度、冲击过电压等电气参数。
1、雷暴日
只要一天之内能听到雷声的就算一个雷暴日。
通常说的雷暴日都是指一年内的平均雷暴日数,单位d/a。
我国把年平均雷暴日不超过15d/a的地区划为少雷区,超过40d/a划为多雷区。
2、雷电流幅值
雷电流幅值是指主放电时冲击电流的最大值。
雷电流幅值可达数十至数百千安。
3、雷电流陡度
雷电流陡度是指雷电流随时间上升的速度。
雷电流冲击波波头陡度可达到50kA/μs,平均陡度约为30kA/μs。
做防雷设计时,一般取波头形状为斜角波,时间按2.6μs考虑。
雷电流陡度越大,对电气设备造成的危害也越大。
4、雷击冲击过电压
雷击时的冲击过电压很高,直击雷冲击过电压可用下式表达:
式中,UD——直击雷冲击过电压;i——雷电流,kA;RIE——防雷接地装置的冲击接地电阻,Ω;di/dt——雷电流陡度,kA/μs;L——雷电流通路的电感,μH。
如通路长度D以m为单位,则L=1.3D。
显然,直击雷冲击过电压由两部分组成(如图所示)。
图直击雷冲击过电压
(a)斜角波(b)半余弦波前一部分决定于雷流的大小和雷电流通道的电阻;后一部分决定于雷电流通道的电感。
雷电的基础知识在带有不同电荷雷云之间,或在雷云及由其感应而生的不同电荷之间发生击穿放电,即为雷电。
雷电是自然界中一种特殊的、极为壮观的声、光、电现象—伴随有闪电和雷鸣的一种恐怖而雄伟壮观的自然现象。
一、雷电的成因及其特性参数⑴、雷云和雷电①雷云:能发生闪电的云为雷云。
层积云、雨层云、积云、积雨云均与闪电有关,其中积雨云则最为重要。
②闪电:积雨云形成过程中,在大气电场以及温差起电效应、破碎起电效应的同时作用下,正负电荷分别在云的不同部位积聚。
当电荷积聚到一定程度,就会在云与云之间或云与地之间发生放电,即“闪电”。
闪电的形状:枝状、球状、片状、带状。
闪电的形式有云天闪电、云间闪电、云地闪电。
⑵、雷电的成因①雷电:带有电荷的云层向下靠近地面时,地面上的凸出物、金属等,会被感应出异性电荷,随着电场强度的逐步增强,雷云向下形成下行先导,地面的物体形成向上闪流,两者相遇即形成对地放电。
②闪电:带负电荷的雷云在大地表面会感应出正电荷,这样雷云与大地间形成一个大的电容器,当电场强度超过大气被击穿的强度时,就发生了雷云与大地之间的放电,即常说的闪电,或者说是雷击。
③雷云放电过程:雷云——雷电先导——迎雷先导——主放电阶段——余辉放电⑶、雷电的特性参数①雷电日(T):一年中发生雷电放电的天数,(衡量雷电活动频繁的程度)。
②雷电流:雷击电流大致呈单极性的脉冲波。
主要可采用三个参数来表示,即雷电流的幅值、波头时间和半幅值时间。
③雷电过电压:主要决定于雷电流陡度和雷电流通道的阻抗,它的大小可按下式来计算:U=IR+L (式中:I—雷电流幅值kA;i—随时间变化的雷电流kA;R—接地电阻Ω;L—雷电流通道的电感H)。
二、雷电的种类主要分为直击雷、感应雷、雷电波入侵、雷球、雷击电磁脉冲。
⑴、直击雷指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。
⑵、感应雷感应雷也称为雷电感应或感应过电压。
雷电及其防护常见问题一、雷电基本知识1.雷雨云是如何形成的?答:雷电放电是由带电荷的雷云引起的。
雷云带电原因的解释很多,但还没有获得比较满意的一致认识。
一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升进入稀薄的大气层冷凝的结果。
强烈的上升气流穿过云层,水滴被撞分裂带电。
轻微的水沫带负电,被风吹得较高,形成大块的带负电的雷云;大滴水珠带正电,凝聚成雨下降,或悬浮在云中,形成一些局部带正电的区域。
实测表明,在5~10km的高度主要是正电荷的云层,在1~5km 的高度主要是负电荷的云层,但在云层的底部也有一块不大区域的正电荷聚集。
雷云中的电荷分布很不均匀,往往形成多个电荷密集中心。
每个电荷中心的电荷约为0.1库仑~10库仑,而一大块雷云同极性的总电荷则可达数百库仑。
这样,在带有大量不同极性或不同数量电荷的雷云之间,或雷云和大地之间就形成了强大的电场。
随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中的电场强度约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对地的火花放电;放出几十乃至几百千安的电流;产生强烈的光和热(放电通道温度高达15000℃至20000℃),使空气急剧膨胀震动,发生霹雳轰鸣。
这就是闪电伴随雷鸣叫做雷电的原故。
2.云对云放电与云对地的放电比例如何?答:大多数雷电放电发生在雷云之间,它对地面没有什么直接影响。
雷云对大地的放电虽然只占少数。
雷暴日数越多,云间放电的比重越大。
云间放电与云地放电之间比,在温带约为1.5~3.0,在热带约为3~6。
3.雷电暴发时的临界状态?答:雷云的底部大多数是带负电,它在地面上会感应出大量的正电荷。
这样,在带有大量不同极性或不同数量电荷的雷云之间,或雷云和大地之间就形成了强大的电场,其电位差可达数兆伏甚至数十兆伏。
随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约30kV/cm,有水滴存在时约10kV/cm)时,就会发生云间或对大地的火花放电;放出几十乃至几百千安的电流;产生强烈的光和热(放电通道温度高达15000℃~20000℃),使空气急剧膨胀震动,发生霹雳轰鸣。
避雷器的电气参数1.系统额定电压(有效值)(kV):与电力系统标称电压相对应。
2.避雷器额定电压(有效值)(kV)(灭弧电压):保证避雷器能灭弧的最高工频电压允许值。
3.工频放电电压(有效值)(kV):避雷器在工频电压下将放电的电压值。
由于火花间隙击穿的分散性,它有一个上限值和下限值。
工频放电电压不能低于下限值,以避免在能量大的内过电压下动作,使避雷器损坏或爆炸。
工频放电电压也不能高于上限值,因在一定的结构下工频放电电压和冲击放电电压有一定的影响关系,工频放电电压高了将使冲击放电电压提高,影响保护效果。
4.冲击放电电压:在冲击电压作用下避雷器发生放电的电压值(幅值)。
5.残压:当波形为8/20μs,5kA或10kA的冲击电流流过避雷器时避雷器两端的电压降,以幅值表示。
此残压为避雷器雷电放电时加于并接的被保护设备上的电压,当然低一点好。
6.避雷器持续运行电压:加于避雷器两端允许持续运行的工频电压有效值。
7.避雷器的直流参考电压U1mA:使恒定的1mA电流流过避雷器时施加于避雷器两端的电压。
避雷器额定电压是施加到避雷器端子间的最大允许工频电压有效值,按照此电压设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。
它是表明避雷器运行特征的一个重要参数,但它不等于系统标称电压。
由于电力系统的标称电压使该系统相间电压的标幺值,而避雷器一般安装在相对地之间,正常工作时承受的是相电压和暂时过电压,并且避雷器有它本身的特点,因此其额定电压与电力系统的标称电压以及其他电器的额定电压有不同意义。
按照国际电工委员会(IEC99-4)及GB11032对无间隙金属氧化物避雷器的规定,避雷器在60度的温度下,注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少1s。
避雷器额定电压建议值:非直接接地系统及小阻抗接地系统:1s及以内切除故障,10kV选用13kV避雷器1s以上切除故障,10kV选用17kV避雷器直接接地系统:110kV选用102kV避雷器并联电容器装置保护用氧化锌避雷器的选型问题唐耀胜(桂林电力电容器总厂,桂林541004))摘要:从我国电力系统实际情况出发,结合避雷器选型的历史回顾和新版本的避雷器国家标准,提出了使电力系统安全、可靠运行的并联电容器装置用氧化锌避雷器的选型方法,对变电站中并联电容器装置的设计具有一定的参考价值。