数学文化及发展第六讲
- 格式:ppt
- 大小:239.00 KB
- 文档页数:16
《数学与文化》课件一、导入1、引言:数学是人类文化的重要组成部分,它不仅是一种语言,更是一种思想,一种精神。
在我们的生活中,无论是购物、旅行、科学研究,还是日常生活中的时间计算、财务管理等等,都离不开数学的应用。
因此,我们要学习数学,理解数学,掌握数学。
2、展示图片:展示一些具有代表性的数学符号、公式和图形,如π、加减乘除、坐标系等,以此引出数学的概念和特点。
二、数学的本质1、数学的起源:介绍数学的起源和发展,从原始社会的计数到现代数学的各个分支。
2、数学的语言:介绍数学的语言和符号系统,包括数字、符号、公式和图形等。
3、数学的方法:介绍数学的基本方法和应用,包括演绎推理、归纳推理、类比推理等。
三、数学与文化1、数学与艺术:介绍数学在艺术中的应用,如黄金分割、对称性等。
2、数学与经济:介绍数学在经济中的应用,如概率统计、优化问题等。
3、数学与科学:介绍数学在科学研究中的应用,如物理学、化学、生物学等。
四、数学的未来1、数学的挑战:介绍当前数学面临的挑战和问题,如哥德巴赫猜想等。
2、数学的未来:探讨数学的未来发展方向和趋势,如人工智能中的机器学习等。
五、结语1、强调数学的重要性和意义。
2、鼓励学生们热爱数学,掌握数学,运用数学。
传统文化与文化传统是我们在学习和生活中经常遇到的概念。
然而,这两个词的含义和关系却往往被人们所混淆。
因此,本课件旨在帮助学生们明确传统文化与文化传统的定义、特点及其关系,从而更好地理解和应用这两个概念。
传统文化的概念及特点:通过案例分析,展示传统文化在历史、地理、社会等方面的表现,引导学生理解传统文化的概念和特点。
文化传统的概念及特点:通过案例分析,展示文化传统在价值观、信仰、艺术等方面的表现,引导学生理解文化传统的概念和特点。
传统文化与文化传统的关系:通过对比分析,让学生明确传统文化与文化传统的和区别,进一步理解二者的关系。
运用所学知识分析具体的文化现象:通过小组讨论的形式,让学生运用所学知识分析具体的文化现象,提高他们的应用能力。
第六讲有理数的乘方一、有理数乘方1.乘方的定义(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数的乘方法则(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.负数的偶次幂是正数.注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n或(a-b)n=(b-a)n .二、科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.三、近似数的精确位一个近似数,四舍五入到哪一位,就说这个近似数的精确到那一位.四、有效数字从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.1.区分乘方与幂的不同2.熟练掌握科学计数法表示数的方法例1.﹣12的值是()A.1B.﹣1 C.2D.﹣2考点:有理数的乘方.分析:根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.解答:解:原式=﹣1,故选;B.点评:本题考查了有理数的乘方,注意底数是1.例2.(﹣2)3的值为()A.﹣6 B.6C.﹣8 D.8考点:有理数的乘方.专题:计算题.分析:根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:(﹣2)3=﹣8,故选C.点评:本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.例3.据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106考点:近似数和有效数字.分析:根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.解答:解:A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.点评:此题考查近似数与有效数字,以及科学计数法,掌握基本概念和方法是解决问题的关键.例4.据国家统计局初步核算,2012年全年国内生产总值519322亿元,请用科学记数法表示519322亿元正确的是()A.5.19322×105元B.519322×105元C.5.19322×108元D.5.19322×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于519322亿有14位,所以可以确定n=14﹣1=13.解答:解:519322亿=51 932 200 000 000=5.19322×1013.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.例5.一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000056=5.6×10﹣5.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.例6.用科学记数法表示数5.8×10﹣5,它应该等于()A.0.005 8 B.0.000 58 C.0.000 058 D.0.O00 005 8考点:科学记数法—原数.分析:把5.8的小数点向右移动5个位,即可得到.解答:解:5.8×10﹣5=0.000 058.故选:C.点评:本题主要考查了用科学记数法表示的数化成一般的数的方法,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.A档1.计算:32=.考点:有理数的乘方.分析:此题比较简单,直接利用平方的定义即可求出结果.解答:解:32=9.故填空答案:9.点评:此题只要利用平方的定义即可.2.﹣32=.考点:有理数的乘方.分析:﹣32即32的相反数.解答:解:﹣32=﹣9.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.计算:﹣22﹣(﹣2)2=.考点:有理数的乘方.分析:利用有理数的乘方运算法则得出即可.解答:解:﹣22﹣(﹣2)2=﹣4﹣4=﹣8.故答案为:﹣8.点评:此题主要考查了有理数的乘方运算法则,注意运算符号.4.近似数8.6×105精确到位.考点:近似数和有效数字.分析:根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.解答:解:近似数8.6×105精确到万位;故答案为:万.点评:此题考查了近似数和有效数字,最后一位所在的位置就是精确度.5.近似数3.06精确到位.考点:近似数和有效数字.分析:精确到哪一位就是看这个近似数的最后一位的数字在什么位.解答:解:近似数3.06精确到百分位.故答案为:百分.点评:本题考查近似数与有效数字,精确度由所得近似数的最后一位有效数字在该数中的位置决定.B档6.近似数1.02×105精确到了位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:近似数1.02×105精确到了千位.故答案为千.点评:本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.由四舍五入得到的近似数0.5600的有效数字的个数是,精确度是.考点:近似数和有效数字.分析:根据有效数字的定义和近似数的精确度求解.解答:解:近似数0.5600的有效数字是5、6、0、0,精确度为精确到0.0001.故答案为4,精确到0.0001.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.8.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 700 000=6.7×106,则n=6,故答案为:6.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.嫦娥三号是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.将于2013年下半年择机发射.奔向距地球1500000km的深空.用科学记数法表示1500000为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 500 000=1.5×106,故答案为:1.5×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1853亿有12位,所以可以确定n=12﹣1=11.解答:解:1853亿=185 300 000 000=1.853×1011.故答案为:1.853×1011.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.C档11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.用小数表示1.027×10﹣6=0.000001027.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.027×10﹣6中1.027的小数点向左移动6位就可以得到.解答:解:原式=0.000001027,故答案为0.000001027.点评:本题考查了科学记数法,写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于137054万有10位,所以可以确定n=10﹣1=9.解答:解:我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109,故答案为:1.3×109.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.15.2015年3月10日,苹果公司宣布Apple Watch从4月10日起开始预售,价格从2588元﹣126800元不等,将126800元精确到千位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126800有6位,所以可以确定n=6﹣1=5.解答:解:将126800元精确到千位,结果为1.27×105;故答案为:1.27×105.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.1.用科学记数法表示0.0000216,结果是(保留两位有效数字).考点:科学记数法与有效数字.分析:根据科学记数法的表示方法,有效数字的意义,可得答案.解答:解:0.0000216=2.2×10﹣5,故答案为:2.2×10﹣5.点评:本题考查了科学记数法与有效数字,数字的前面有几个零,科学计数法中10的指数就是负几.2.计算:=.考点:有理数的乘方.分析:直接利用乘方的意义和计算方法计算得出答案即可.解答:解:﹣(﹣)2=﹣.故答案为:﹣.点评:此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.3.计算(﹣1)2012﹣(﹣1)2011的值是.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.4.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2亿=200000000用科学记数法表示为:2×108.故答案为:2×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.光的速度为300000千米/秒,太阳光从太阳照到地球约需500秒,地球与太阳距离是米(用科学记数法).考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300000×500=150000000千米=1.5×1014米.故答案为1.5×1014.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.计算:﹣24+(﹣2)4=.考点:有理数的乘方.专题:计算题.分析:此题比较简单,直接利用幂的定义就可以求出结果.解答:解:﹣24+(﹣2)4=﹣16+16=0.故填空答案:0.点评:此题主要考查了乘方的定义,其中的规律:①负数的奇数次幂是负数,负数的偶数次幂是正数;②﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.在近似数6.48中,精确到位,有个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.故答案是百分和3.点评:本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.用四舍五入法把3.0987精确到0.01的结果是.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:把3.0987精确到0.01,即对千分位的数字进行四舍五入,是3.10.故答案为:3.10.点评:精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的8入了后,百分位的是9,满了10后要进1.4.数2.30×103精确到位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:2.30×103精确到十位.故答案为十.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.2014年我国的国内生产总值(GPD)达到636000亿元,请将636000用科学记数法表示,记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000用科学记数法表示为6.36×105.故答案为:6.36×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.写出下列用科学记数法表示的数的原来的数:2.35×10﹣2=.考点:科学记数法—原数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.因而把这个数还原,就是把2的小数点向左移动2位.解答:解:2.35×10﹣2=0.0235.故答案为:0.0235.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.8.我国现有约7849万名共青团员,用科学记数法(保留两个有效数字)表示为名.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7849万有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:7849万=7.849×107≈7.8×107,故答案为7.8×107.点评:本题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.课程顾问签字: 教学主管签字:。
《数学发展简史》主讲教师:王幼军目录导言:为什么学习数学史第一讲:早期文明中的数学1.古埃及的数学2.巴比伦的数学3.中国早期的数学第二讲:古希腊的数学1.希腊数学——从爱奥尼亚到亚历山大2.亚历山大时期第三讲:中国古代的数学1.汉以前的中国数学2.从魏晋到隋唐时期的中国数学3.十二、三世纪的宋元数学第四讲:印度与阿拉伯的数学1.印度的数学2.阿拉伯数学第五章:数学的复兴1.中世纪的欧洲数学2.经验主义数学观的形成及其对于近代数学实践的影响3.三次、四次方程的求根公式的解决4.三角学的历史第六讲:近代数学的兴起1.对数2.解析几何的诞生3.微积分的产生与发展4.概率论的产生第七讲:近代数学的发展1.几何学的发展2.代数学的发展3.分析学的发展4.公理化运动第八讲:现代数学概观1.集合论悖论与数学基础的研究2.纯数学的发展3.应用数学的发展4.六十年代以后的数学导言:为什么学习数学史1.为了更全面、更深刻地了解数学每一门学科都有它的历史,文学有文学史,哲学有哲学史,天文学有天文学史等等。
数学有它自己的发展过程,有它的历史。
它是活生生的、有血有肉的。
无论是概念还是体系,无论是内容还是方法,都只有在与其发展过程相联系时,才容易被理解。
可以说,不懂得数学史,就不能真心地理解数学。
数学课本上的数学,经过多次加工,已经不是原来的面貌;刀斧的痕迹,清晰可见。
数学教师要把课本上的内容放到历史的背景上考察,才能求得自己的理解;然后,才有可能帮助学生理解。
2.为了总结经验教训,探索发展规律我国自古以来就非常重视历史、“前事之不忘,后事之师”(《战国策·赵策一》)早已成为人们的共识。
英国哲学家培根(Francis Bacon,1561—1626)的名言“历史使人明智”(Histories make men wise)也是尽人皆知的成语。
数学有悠久的历史,它的成长道路是相当曲折的。
有时兴旺发达,有时衰败凋残。
《数学文化》教学大纲一、课程的性质和教学目标《数学文化》课程是数学与全院其他专业的通识选修课,是在我院高职数学教学体系和内容改革中为全院学生开设的新课,有最典型数学素质的教学特点。
鉴于数学在工科类专业中作用日益增大和文科学生对数学的误解,本课程将有着重要作用。
课程对象主要是我院一、二年级专科学生,它能弥补正常上课所缺少的文化方面的内容,给学生以正宗的数学文化熏陶。
《数学文化》这一课程主要以数学史、数学问题、数学知识等为载体,介绍数学思想、数学方法、数学精神。
学生学习数学,除了形成理性思维能力之外,更重要的是理解数学的价值,提高自身的数学素质。
二、课程的任务和要求本课程旨在贯穿素质教育的思想,既要着眼于提高学生的数学素质,又要着眼于提高学生的文化素质和思想素质。
通过《数学文化》课程的学习,促使学生将初步了解数学与人类社会发展的关系,体会数学的价值,开阔视野,受到优秀文化的熏陶,领会数学的美学价值,从而改变目前学生“数学非常难且高不可攀”的观念。
三、适用范围:我院各专业学生。
四、教学内容本课程教学内容共15讲,总计30学时,其中理论教学讲座占28学时,考试占2学时。
第一讲数学发展史简介第二讲数学与数学文化第三讲悖论与历史上的三次数学危机第四讲微积分的发展第五讲解析极限思想与圆周率第六讲公务员考试中的数学问题第七讲黄金分割与斐波那契数列第八讲数学家笛卡尔第九讲韩信点兵与中国剩余定理第十讲数学电影欣赏——美丽心灵第十一讲哥德巴赫猜想与中国数学家第十二讲数学美第十三讲趣味数学第十四讲数学电影欣赏——博士的爱情方程式第十五讲考试平时成绩: 50%收获感想:50%(写一篇不少于2000字的心得体会)五、学时分配六、说明1 课程教学方法与手段:本课程采用课堂讲授,结合实际范例深入浅出讲解讨论。
2 课程考核方法与要求:本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。
第六讲等差数列求和(一)小朋友们,还记得我们第一讲的内容吗——数中的规律。
那么对于一列有规律的数列我们怎么来求和呢?上一讲我们利用配对求和的方法能够很快解决一部分求和的问题,但是,当算式再复杂点又该怎样来解决呢?我们这一讲来介绍一种更快捷简单易懂的方法!我们先来认识什么是等差数列,如:1+2+3+……+49+50;2+4+6+……+98+100。
这两列数都有共同的规律:每一列数从第二项开始,后一个数减去前一项的差都相等(相等差又叫公差)。
像这样的数列我们将它称之为等差数列。
我们再来掌握两个公式,对于等差数列,如果用字母S代表没一列数的和,字母a代表首项(即第1项),字母b代表末项,字母n 代表项数(加数的个数),那么S=(a+b)×n÷2。
如果n不容易直接看出,那么可用公式来计算出来:n=(b-a)÷d+1典型例题例【1】求1+2+3+……+1998+1999的和。
分析首项a=1,末项b=1999,项数n=1999。
解S=(a+b)×n÷2=(1+1999)×1999÷2=2000×1999÷2=1000×1999=1999000例【2】求111+112+113+……+288+289的和。
分析首项a=111,末项b=289,公差d=1,项数n=(289-111)÷1+1=178+1=179。
解S=(a+b)×n÷2=(111+289)×179÷2=400×179÷2=200×179=35800例【3】求2+4+6+……+196+198的和。
分析首项a=2,末项b=198,公差d=2,项数n=(198-2)÷2+1=98+1=99。
解S=(a+b)×n÷2=(2+198)×99÷2=200×99÷2=100×99=9900例【4】求297+294+291+……+9+6+3的和。