中国数学发展史论文
- 格式:doc
- 大小:37.50 KB
- 文档页数:9
数学的发展史作文,800字左右生活中处处有数学,中国数学的发展,数学对世界的促进作用。
关键代数、几何三角学、勾股定理、讲,数学学得好不好关系到整个语文要知道写作背景,学英要知道发展史,那么才能学好。
”“数”字在字曲中的意思有3个,其中一个是划分或计算出来的量。
“学”在字典中是学习。
两个习划分或计算出来的量,简称为“数学”。
看起来简单,可数学在众多学科中属于最古老的一门,资历深,远到古代,深到各个学科领域,数学在我们生活中无处不在,天天和数学打交道。
作为一个中国人,又是一个学理科的学生,就让我历史知识。
中国是一个世界上数学话,可以看出无论在算术、代数、几何和三角各方面都十分发达。
大约在3000年以前,中国已经知道自然数的国家一样,乘法表的产生在中国古代叫九九,估计在2500年以前中国已有这个表。
在那个时候,人们便以九九来代表数学。
现在小学生用的乘法表口决估计便是那时候留下来的。
十四世纪以前,属题的研究,中国是先进的国家之一。
历史文献揭示出在计算中有名的盈不足求是由中国传经欧洲的。
可见,中国当时在世界上,对算术方面是举足轻重的,任何国度都无法替代。
中国不仅在算术、代数方面的贡献大,在几何方面、三角学方面的贡献也是不可言喻的。
了数学,所以使各个民族、各个来解释一切,不仅仅是因为万物都包含数,而且说万物都是数。
毕达哥拉斯学派用这个原理发现了勾股此导致不可通约量的发理。
这些既是算术问题,又和几何有关。
如果说数学促进人类思想的解放,那么可以说分成两个阶段:第一个阶段以数学开始成为一门科学直到以牛顿为最高峰的第一次科技革中觉醒,上帝的地位逐渐被贬低了,人的地位上升了。
人和自然的关系从然与自然的对抗增强等起。
那时候,数学取得了惊人的进展,当时科学发展的最大的问题看作一个发展的、进化的各部分相互联系的整体。
人类在自接的经验去认识宇宙,是多么不造出了自然界中本来没有的东西一切工具、仪器等等,来认识和创造世界。
是我们暂时不必去回答,但十分明显的是数学的发展确实给人类的世界是多姿多彩的,它蕴藏着人结晶。
数学的发展论文2000字1、中国古代数学的发展史1.1起源与早期发展数学是研究数和形的科学,是中国古代科学中一门重要的学科。
中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。
如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。
古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。
这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的勾三股四弦五已被发现。
1.2中国数学体系的形成与奠基时期这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。
中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学著作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。
赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的勾股圆方图注文是数学史上极有价值的文献。
刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学研究性学习数学发展史论文数学发展史是一个广阔的领域,涵盖了几千年的时间和各种各样的数学思想和进展。
研究这个领域可以帮助我们了解数学的起源、发展和应用,并揭示出一些数学家们在历史上所做的伟大贡献。
本文将通过分析数学发展史中的两个里程碑事件来探讨数学研究的重要性,以及如何将数学发展史与现代数学研究相结合。
数学发展史中的一个重要事件是公元前3000年左右古巴比伦人发明了数学。
古巴比伦人是世界上最早掌握数学的文明之一、他们用60进位制的数字系统,开创了代数和几何学的基础,从而为未来的数学发展铺平了道路。
古巴比伦人的数学知识主要用于解决土地测量、商业交易和天文学方面的问题。
通过研究他们的著作和记录,我们可以了解他们当时的数学知识和应用范围,从而更好地理解他们对数学的贡献。
另一个重要的数学发展历史事件是公元前6世纪的希腊数学。
希腊数学家发展了几何学,并建立了公理化的几何系统,奠定了几何学的基础。
其中最著名的数学家是毕达哥拉斯和欧几里德。
毕达哥拉斯定理和欧几里德几何学对现代数学的发展有着深远的影响。
希腊数学家的贡献推动了数学的进一步发展,并开启了数学与哲学的相互关系。
通过研究数学发展史,我们可以发现几个重要的趋势。
首先,数学的发展是逐步的,每一代数学家都在前人的基础上进行扩展和改进。
这种积累性的发展为现代数学提供了坚实的基础。
其次,数学的发展几乎与人类的其他科学和文化领域的进展同时进行。
数学在天文学、物理学、工程学等领域发挥了重要作用,并为这些领域的科学研究提供了数学模型和工具。
最后,数学的发展历程中还存在许多未解决的问题和新的研究方向。
数学研究永远不会停止,每一代数学家都会为之前未能解决的问题提供新的解决方案。
要进行数学研究,我们可以通过阅读历史文献、研究数学家的传记和著作,以及参与数学研究项目来深入了解数学发展史。
此外,还可以参加数学研讨会和学术会议,与其他数学爱好者和专业人士交流和分享研究成果。
通过这些研究方法,我们可以更好地了解数学的发展历史,并为数学研究的未来贡献自己的力量。
中国的数学文化史鲍是吉学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。
数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。
而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。
学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。
纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢”一、中国古代数学家数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,着有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的着作可以看出,她是一位从事天文和筹算研究的女数学家。
算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。
一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。
数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
中国数学的发展史我国古代数学经数千年的发展,到宋元时达到了高峰期。
而元代更是这种高峰期的顶峰状态。
例如中国自然科学史研究室数学史组是其《宋元数学综述》一文里说道:“13世纪下半纪(主要指元代)特别应该我们特别注意。
如果说宋元数学是以筹算为中心内容的中国古代数学发展的高潮,那么13世纪下半纪正就是这个高潮的顶峰。
”我国已故知名数学史专家钱宝琮先生也说道:“中国数学以元初为极盛,学人蔚起,着并作如林,于数学史上摆特定光彩。
”可知元代数学在我国数学史上所占到的关键地位。
元代数学之所以达到我国古代数学的高峰期,其主要标志是涌现出了一批著名数学家及其着作,提出并解决了一些数学方面的高难问题,取得了杰出成就。
元代知名数学家存有李冶、朱世杰、蒙哥等人。
李冶着有《测圆海镜》12卷、《益古演段》3卷;朱世杰着有《算学启蒙》3卷、《四元玉鉴》3卷;蒙哥对古希腊伟大数学家欧几里得的《几何原本》有研究。
李冶明确提出荘方程的方法(即为天元之术),朱世杰明确提出了多元高次联立方程的数学分析(即为四元之术)及垛积术与招差法。
这些都是具有世界性影响的成就。
这些成就的获得就是存有其深刻的社会原因和数学本身发展原因的。
从社会政治经济对数学发展的影响来看,元代虽然一度战火连天,但长江下游一带受战争的影响较小,社会经济得到了不断发展,商业贸易也比较繁荣。
商业的经济繁荣就日益向数学明确提出建议,怎样才能更快更精确地展开排序并快速掌控各种计算方法?元代在南宋“秦九韶捷法”和各种“歌诀”的基础上,又发生了不少内容更多样的新颖算术书,化解了社会课堂教学向数学明确提出去的建议,从而也推动了数学的发展。
如朱世杰的《算学启蒙》就是一本启蒙性的通俗教科书,其中有不少便捷的歌诀如九九乘法歌与归除歌诀等。
这样与社会课堂教学的融合,同时又惹来了更多的人渴求拒绝接受数学教育。
祖颐为朱世杰《四元玉鉴》所作序言中就说:“(朱世杰)周流四方……踵门而学者云集”。
莫若的序文也说道:“燕山松庭朱先生以数学名家周游湖海二十余年矣,四方之来学者日众。
目录1 引言 (3)2 计数法和自然数 (3)2.1 记数制度 (3)2.2 自然数 (4)3 有理数系 (8)3.1有理数的引入 (8)3.2分数和负数 (8)4 实数理论的完善 (9)4.1无理数的由来 (9)4.2 实数的发展 (10)5 复数的扩张 (11)5.1 复数的产生 (11)5.2 复数的历史意义 (11)6 结论 (12)参考文献 (13)致谢 (14)关于数的发展历史摘要:数系理论的历史发展表明,数的概念的每一次扩张都标志着数学的进步,但是这种进步并不是按照数学教科书的逻辑步骤展开的。
希腊人关于无理数的发现暴露出有理数系的缺陷,而实数系的完备性一直要到19世纪才得以完成。
负数早在《九章算术》中就已被中国数学家所认识,然而,15世纪的欧洲人仍然不愿意承认负数的意义。
“四元数”的发明,打开了通向抽象代数的大门,同时也宣告在保持传统运算定律的意义下,复数是数系扩张的终点。
关键词:记数法;素数;有理数;实数理论;复数扩张1 引言数是数学中的基本概念,也是人类文明的重要部分。
数的概念的每一次扩展都标志着数学的巨大飞跃。
一个时代人们对于数的认识与应用,以及数系理论的完善程度,反映了当时数学发展的水平。
现在,我们所应用的数,已经构造的如此完备和缜密,以致于在科学技术和社会生活的一切领域中,它都成为基本的语言和不可或缺的工具。
在我们得心应手地享用这份人类文明的共同财富时,是否想到在数的形成和发展的历史过程中,人类的智慧所经历的曲折和艰辛呢?2 记数法和自然数2.1 记数制度记数制度或计数法就是记录或表示数目的方法,主要指数字符号的表现形式以及技术工具的使用。
在文字生产之前,人类就已形成数的概念。
那时数目是用事物来记录的,如小石子,竹片,树枝,贝壳之类。
这些东西容易散乱,自然会想到用结绳的办法来记录。
我国《周易.系辞下》有“上古结绳而治,后世圣人,易之以书契”的说法。
东汉郑玄称:“事大,大结其绳;事小,小结其绳。
中国数学发展史提起金牌,人们可能马上要联想到体育。
在中国历史上,体育健儿屡摘金牌,只是近几十年的事。
然而,与之相反,我国的数学,在上千年前,就不断出现过一些金牌得主,而近百年来,我国在这些学科却逐渐落伍了。
对我国古代数学如此早熟,人们常常会生出些疑问、猜想和传说。
许多书上都记载着这么一个美丽的传说,说的是3000多年前,我们的祖先夏禹为民治水,废寝忘食,三过家门而不入。
有一天,突然从滚滚的波涛中跃出了一个龙头马身子的动物来,它的背上还驮着一幅图,名叫“河图”;事也凑巧,与此同时,在涓涓流淌的洛河(黄河支流)上,也浮出了一只巨大的乌龟,背上也驮着一幅图,名叫“洛书”。
后来它们分别把这一图一书献给了大禹。
传说,这是河神的旨意,要帮助大禹掌握治水的诀窍,而大禹看了这“河图洛书”,真的懂得了测量,最后带领百姓开渠引水,获得了成功。
难道古代数学的如此早熟,真的是靠神灵的暗中保佑吗?让历史来回答吧!翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。
中国数学的起源(上古~西汉末期)古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。
的确,一个没有数的世界是不堪设想的。
今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。
在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。
如果当时要有人能数到10,那一定会被认为是杰出的天才了。
后来人们慢慢地会把数字和双手联系在一起了。
每只手各拿一件东西,就是2。
数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。
就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。
先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。
中国数学历史发展史话说中国这片古老而又神奇的土地,不仅有悠久的历史,还蕴藏着璀璨的数学智慧。
咱们今天就来聊聊,中国数学历史发展那点事儿,看看咱们老祖宗是怎么玩转数字的。
早在很久很久以前,那会儿咱们还没用上计算器、电脑这些高科技玩意儿,古人就已经开始琢磨数学了。
最早的数学记录可以追溯到甲骨文时代,那时候的古人啊,用简单的符号来记录数目,虽然看起来简单,但那可是数学的萌芽啊!想象一下,在那个时候,能算出多少东西,那简直就是神一般的存在。
到了商周时期,咱们的祖先们就开始玩起了“算术”这个高级游戏。
那时候有个叫《九章算术》的宝贝,那可是中国古代数学的经典之作,里面的内容涵盖了面积、体积、勾股定理、方程求解等等,简直就是一部古代的“数学百科全书”。
你说咱们现在学的数学知识,很多都是从那时候传承下来的呢!春秋战国时期,诸子百家争鸣,数学也跟着沾光。
那时候的数学家们,不仅研究数学,还把它应用到了天文、历法、建筑等各个领域。
比如咱们现在说的“勾三股四弦五”,就是那时候的数学家们通过观察和实践,得出的宝贵结论。
那时候的人,真是既聪明又勤奋,让人不得不佩服。
汉朝时期,数学又有了新的发展。
张衡,大家知道他吧?他不仅是天文学家,还是数学家呢!他发明的地动仪,那可是世界级的科技发明。
在数学上,他也做出了不少贡献,推动了数学的发展。
那时候的数学,已经开始涉及到几何、代数等领域,真是越来越深奥了。
唐宋时期,数学更是迎来了黄金时代。
那时候有个叫李冶的数学家,他写了一本《测圆海镜》,专门研究圆和三角函数的问题。
还有祖冲之,他算出的圆周率,那可是精确到了小数点后七位,比欧洲人要早几百年呢!你说这厉害不厉害?那时候的数学家们,真是把数学玩出了花儿,让人叹为观止。
明清时期,数学虽然受到了一些冲击,但依然在艰难中前行。
那时候的数学家们,开始尝试用西方的数学方法来研究问题,比如徐光启翻译的《几何原本》,就让中国人第一次接触到了欧几里得的几何学。
中国古代数论历史在人类历史的长河中,中国古代数学发展取得了重要的成就,其中数论作为数学的一个重要分支,在中国古代数学体系中占据了重要的地位。
数论研究了整数的性质、结构和相互关系,它是研究数学中的基础和核心。
本文将从古代中国数学家对数论的贡献入手,探究中国古代数论的发展历程。
一、古代数论起步中国古代的数论研究可以追溯到先秦时期。
《周髀算经》是一部重要的古代数学著作,被认为是中国古代数论的起点。
《周髀算经》中记载了关于数的尺和数的角的内容,它介绍了用以计算角度的方法和角度与线段的关系。
这些内容对中国古代数学的发展起到了重要的推动作用。
二、古代中国数论的重要贡献1. 《九章算术》《九章算术》是中国古代一部重要的数学著作,被誉为中国古代数学的圣典。
其中的“方程”一章是古代数论的重要内容。
《九章算术》中收录了琅琅上口的数学题目,如“二十五桃”、“百鸡问题”等,这些题目不仅带有趣味性,也寄托了古人对数学的探索和智慧的追求。
2. 整除定理中国古代数学家刘徽在《九章算术》中提出了著名的“整除定理”,即若整数a和b满足a|b,则存在唯一的整数q使得b=aq。
这一定理揭示了整数之间的整除关系,为后来的数论研究奠定了基础。
3. 《孙子算经》《孙子算经》是中国古代一部重要的军事数学著作,其中也包含了一些与数论相关的内容。
在《孙子算经》中,孙子提出了数学中的二进制思想,并将其应用于解决实际问题。
这对后来计算机科学的发展产生了重要的影响。
三、古代数论的发展与应用中国古代数论的研究不仅停留在理论层面,还广泛应用于实际问题的解决。
比如,《九章算术》中的“方程”一章中的题目就是一种应用实例,古人通过解这些数学题目来实践数论的研究成果。
此外,中国古代数论还应用于天文、农业、商业等领域,为古代社会的发展做出了重要贡献。
四、古代数论的传承与影响中国古代数论的发展离不开古代数学家的努力奋斗,他们将数论的研究成果传承给了后世。
在后来的历史中,古代中国数论对于世界数学的影响依然深远。
中国数学发展历史中国是世界上文明发达最早的国家之一,数学这门学科在中国的发展历史源远流长。
从远古的河洛文化、到春秋战国时期的《九章算术》,再到现代的数学研究,中国数学的发展历程呈现出一种独特的风格和面貌。
中国的数学起源可以追溯到远古的河洛文化。
河洛文化是中国古代的一种计数方式,利用石子、贝壳等物进行计数,后来逐渐演变为算盘的使用。
这种计数方式利用了十进制的原理,使得计数更加方便、准确。
到了春秋战国时期,中国的数学发展迎来了一个高峰。
《九章算术》的出现标志着中国古代数学体系的形成。
这部著作包含了大量的数学问题及其解法,内容涵盖了代数、几何、概率统计等多个方面。
其中,求解线性方程组的方法、分数运算、面积和体积的计算等成果在当时世界上处于领先地位。
近代以来,中国数学的发展受到了西方数学的影响,同时也开始与西方进行交流。
清朝时期,西方数学开始被引入中国,中国的数学家开始学习西方的数学知识。
这使得中国的数学研究进入了一个新的阶段。
在现代,中国的数学研究已经取得了显著的成果。
中国的数学家们在代数、几何、拓扑、概率统计等多个领域都取得了重要的突破。
其中,中国在解析数论、代数几何、泛函分析等领域的成就尤为突出。
同时,中国的数学家们也开始将数学应用到其他领域,如物理、工程、经济等。
随着科技的进步和人类对自然界认识的深入,数学的研究也在不断地深入和发展。
在中国,数学界正在积极推动学科交叉和创新研究。
例如,将数学与物理、工程、经济等领域相结合,开展跨学科的研究,为解决实际问题提供新的思路和方法。
中国的数学教育也在不断改进和优化。
越来越多的学生开始接触和理解数学,培养出了一大批优秀的数学人才。
这些人才将在未来的数学研究和应用中发挥重要的作用。
总结:中国数学发展历史悠久,从河洛文化到《九章算术》,再到现代的数学研究,中国的数学一直在不断地发展和进步。
未来,随着科技的不断进步和创新研究的推动,中国的数学将会在更多的领域发挥重要作用。
中国数学的发展历史论文中国数学是世界上最古老的数学之一,其发展历史可以追溯到几千年前的古代中国。
在中国古代,数学是与其他学科一样受到高度重视的学科之一,并且有着非常丰富的数学发展历史。
最早的数学文献可以追溯到商朝时期的甲骨文,这些甲骨文中就包含了简单的计算和数学概念。
随着时间的推移,中国的数学发展逐渐壮大,汇集了许多优秀的数学家和学者。
在中国古代,最著名的数学著作之一就是《九章算术》,这部著作涵盖了从几何学到代数学的各种数学内容,并对后世的数学发展产生了深远的影响。
除此之外,《算经》、《孙子算经》等数学著作也在中国古代留下了重要的印记。
随着中华文明不断的发展,中国的数学也不断地得到发展和推广。
在宋朝时期,数学家秦九韶提出了秦九韶算法,这一算法在解决一元高次代数方程的问题上有着重要的作用,被认为是中国代数学史上的重要里程碑之一。
除了传统的代数学和几何学之外,中国古代还有着丰富的数论、概率论和微积分的研究。
这些数学概念在当时就已经得到了重要的探讨和发展,并且对后世的数学发展产生了深远的影响。
在近代,中国的数学发展也保持了较高的活跃度。
自从19世纪末20世纪初开始,中国的数学家们开始与世界各国的数学家进行交流和合作,这对中国数学的发展起到了很大的推动作用。
今天的中国数学处于高速发展的阶段,在数学研究、教育和应用方面都取得了很大的进步。
中国数学家们也在国际上取得了很多重要的成就,为中国数学的发展增添了很多新的光彩。
总的来说,中国数学的发展历史可以追溯到数千年前的古代,跨越了时空的变迁,积淀着丰富的数学文化和传统。
中国数学的辉煌历史为今后的数学发展提供了宝贵的经验和启示,也为世界数学的发展做出了重要的贡献。
中国数学的发展历史可以说是源远流长,不仅在几何学、代数学、数论方面取得了丰硕成果,还在应用数学和跨学科交叉研究方面有着深厚积淀。
古代数学家如刘徽、祖冲之、杨辉等的伟大贡献,为中国古代数学奠定了坚实的基础,成为当今中国数学的宝贵遗产。
数学史论文(4篇)数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
小编为朋友们精心整理了4篇《数学史论文》,希望可以启发、帮助到大朋友、小朋友们。
数学史论文篇一笔者认为,在宋元时期出现发展并在明代得以全面应用的中国珠算,[(4)]作为中国传统算器的历史性创造以及它作为实践应用的历史地位并没有得到数学史界的充分认识。
目前的评价没有把中国珠算与中国古代数学的发展规律联系起来,没有把中国珠算作为宋元数学成就之后的又一重大成就,明代珠算与宋元数学的比较评价实际上是中国古代数学史研究评价中一个很值得重视的理论问题。
在中国古代数学史的研究中,对宋元数学和明代珠算评价的反差,实际上已经带来了中西古代数学比较研究和评价方面的某些困难。
客观地历史地评价明代珠算,涉及到我们如何认识和理解中国古代数学的算器型的算法体系、技艺型的价值取向和古代数学评价标准等问题。
1珠算与算器型算法体系目前,许多中国数学史的学者都从中国文化与西方文化的差异中认识到,中西古代数学是两种不同风格、不同形式、不同构造体系的数学模式。
许多中国学者都从中国古代数学发生发展及其流变的规律中指出中国古代数学区别于古希腊数学的特征,并且强调要在中西古代数学的差异之处体现中国古代数学的意义及其对人类数学的贡献。
在论证分析中国古代数学的特征时,许多学者指出了中国古代数学不象古希腊数学那样依逻辑运演和逻辑证明为主要形式,中国古代数学主要是以筹算的运演为主,算筹的运演规律构成了中国古代数学的基本特征。
换句话说,使用算筹这样一种算器,并以其为基本运演形式是中国古代数学的基本特征。
李继闵先生认为:“形数结合,以算为主,使用算器,建立一套算法体系是中国传统数学的显著特色。
”[(5)]吴文俊先生在论及中国古代数学紧紧依靠算器而形成的数学模式时强调指出:“我国的传统数学有它自己的体系与形式,有着它自身的发展途径与独到的思想体系,不能以西方数学的模式生搬硬套……从问题而不是从公理出发,以解决问题而不是以推理论证为主旨,这与西方之以欧几里得几何为代表的所谓演绎体系旨趣迥异,途径亦殊……在数学发展的历史长河中,数学机械化算法体系与数学公理化演绎体系曾多次反复互为消长,交替成为数学发展中的主流。
数学发展史论文引言计算机是20世纪人类最伟大的发明之一,它的出现彻底改变了人类社会的生产和生活方式。
从第一台计算机诞生至今,计算机技术一直在不断发展和进步。
本文将详细介绍计算机的发展历程,并探讨未来计算机的发展趋势。
一、计算机的诞生20世纪40年代,第二次世界大战期间,美国军方为了解决计算弹道轨迹的问题,急需一种高速计算工具。
于是,宾夕法尼亚大学的莫奇利和埃克特领导的研究小组成功研制出了世界上第一台电子计算机ENIAC(Electronic Numerical Integrator And Calculator)。
这台计算机使用了个电子管,重达30吨,耗电量150千瓦,造价40万美元。
虽然ENIAC体积庞大、耗能高、可靠性差,但它奠定了计算机的基础,为后续计算机的发展奠定了基础。
二、计算机的发展阶段1、第一代计算机(1946-1958)第一代计算机以电子管作为基本元件,特点是体积庞大、耗能高、可靠性差。
这一时期的代表机型有ENIAC和UNIVAC。
这一代计算机主要用于科学计算和数据处理,如天气预报、原子能研究和航天工程等。
2、第二代计算机(1958-1964)第二代计算机以晶体管作为基本元件,体积和耗能大大减少,可靠性也得到了提高。
这一时期的代表机型有IBM 700/7000系列。
这一代计算机除了用于科学计算和数据处理外,还广泛应用于企业管理和商业领域。
3、第三代计算机(1964-1971)第三代计算机以集成电路作为基本元件,进一步缩小了体积,降低了耗能,提高了可靠性。
这一时期的代表机型有IBM 360系列。
这一代计算机开始应用于文字处理、图形处理和声音处理等领域。
4、第四代计算机(1971至今)第四代计算机以大规模集成电路作为基本元件,体积更小,耗能更低,可靠性更高。
这一时期的代表机型有IBM PC系列、苹果Macintosh 系列和Windows操作系统。
这一代计算机广泛应用于各种领域,如办公自动化、电子商务、物联网、人工智能等。
中国的数学文化史鲍是吉郑州师院初教院S12数学与科学 123116082001学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。
数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。
而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。
学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。
纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢”一、中国古代数学家数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。
算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。
一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。
应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。
算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。
清代著名数学家梅文鼎、戴震等人曾加以研究。
戴震称其为“策算”。
王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。
她在著作中对西洋筹算进行增补讲解,使之简易明了。
王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。
今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。
二、中国古代数学起步早发展慢的原因从中西古代数学文化史的比较意义上分析,形成中西古代数学的两种倾向:逻辑演绎倾向和机械化算法倾向,其作用与构造差异主要是由文化系统赋予的文化层次及其价值取向的差异造成的,这两种倾向的对立统一就构成了数学自身内在的矛盾运动和发展动力。
由此我认为是由以下原因影响的:1、社会制度当时的中国是一个极其封建的君主制度,一切的中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要。
中国数学的发展是建立在为封建统治阶级服务的基础上,它主要是针对中国封建阶级的需要而建立的,具有鲜明的阶级思想,不同与希腊的数学。
希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。
这就决定了,中国的数学发展具有局限性。
所以中世纪的中国数学受到社会制度的制约,:中国传统数学自元末以后逐渐衰微,皇室更迭的漫长的封建社会,在晚期表现出日趋严重的停滞性与腐朽性,数学发展缺乏社会动力和思想刺激。
元代以后科举考试制度中的《明算科》完全废除,唯以八股取士,数学家社会地位低下,研究数学者没有出路,自由讨论受到束缚甚至遭禁锢。
还有在中国占支配性地位的儒家思想中,对格物致知的重要性认识不足,使程朱理学中,更极端的贬低数学。
中国古代的思想体系(以儒家为主),人们的思想也受到束缚甚至遭到禁锢,桎梏了知识人的思维,使他们不易在数学方面有所造诣。
中国古代数学只是极少数专业数学家的爱好,不受统治者重视、也不为普通人所知。
实行八股取士之后,书院大都以儒学为主,连读书人都不识算学了。
中国人只会机械地使用算盘和算筹,数学逐渐走向衰落,导致中国古代数学没有形成严密的逻辑演绎体系。
2、文化观念不同民族文化中的数字或数学都在特定的文化氛围中有某些神秘性,而且不同民族文化中的数学神秘性发展的道路是各不相同的。
在古希腊文化的发展中,原始数学始终沿着神秘性和数量性的双重功能统一性继承的轨道向前发展。
古希腊数学与神秘性的结合,使得他们从宗教、哲学的层次追求数学的绝对性以及解释世界的普遍性地位,这正是古希腊数学完全脱离实际问题,追求逻辑演绎的严谨性的文化背景。
然而,在中国文化发展中,我国古代数学筹算操作的机械化运演形成的计算体系来源于作为原始数学的竹棍操作运演在历史进程中的演化。
中国数学理论表现为运算过程之中,即“寓理于算”。
中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
还有的就是中国数学本身的弱点-无适应性的符号,导致中国古代数学受到几何上的符号制约,导致中国古代数学没有形成严密的逻辑演绎体系。
3、筹算系统我国在殷商时代就有了十进制和位值制,一直到元朝都采用筹算法。
筹算法所使用的算筹,是一种“径一分,长六寸”的竹片。
计算时,在一个方形的木盘上,将它们按照一定的方法摆来摆去。
熟练此法者,运算起来也相当快,但无法运算高次方程。
筹算还有一个不足是,许多数学问题有答案而无解答过程。
这自然不利于数学知识的广泛应用与传播。
中国古代数学不仅未形成以宗教、哲学的层次思辨自己的方法、结构形式,而是形成了专司具体数学问题的特征。
中国古代数学在文化传统中的价值取向就是在筹算运演机械重复的条件下尽力构造简明的运演方法,准确迅速地解决实践提出的具体问题。
中国传统的价值观念以及筹算的技艺型价值取向,决定了中国古代数学的发展和构造模式,这种筹算数学的价值取向保证了中国古代数学机械化特色的发展方向,注重数学实际应用的层次不断发展,机械化的计算技术和水平不断提高。
中国古人借助于算筹这一特殊工具,将各种实际问题分门别类,进行有效的布列和推演,在比率算法、“方程”术、开方术、割圆术、大衍求一术、天元术、四元术、垛积招差术等等方面都取得辉煌成果,在宋元时期数学达到高潮。
元代以后发展的珠算制是筹算制的发展改革和继续,可以说,中国传统数学在数量关系上是以算筹制为主线贯穿一起,以提高机械化的计算技术来解决实际问题为目标的。
同时,文化价值观的传统特点也造就了一批传播和发展作为技艺数学的群体,这是促进数学机械化发展的人才优势,尤其是在相对稳定的文化环境中,其传统价值观念发挥了重要作用。
但是这种以机械化的筹算方式,导致中国古代数学没有形成严密的逻辑演绎体系。
4、研究教学风格通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。
从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩。
中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。
同时,用一整套程序语言来揭示计算方法,而演算程序简捷而巧妙。
但是严密的逻辑演绎体系是要精密的计算和可靠的依据的,很多不可能与生活息息相关的,还有的就是没有一定的学派去管理这一体系。
比如,中国的很多数学成就都是继承前人,而不是去学习这一理论的统一体系,导致中国古代数学没有形成严密的逻辑演绎体系。
所以说,中国古代数学没有形成严密的逻辑演绎体系。
三、现代数学及中国现代数学的发展数学作为人类文明不可或缺的一部分,更是一种难得的文化现象。
历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家,最著名的如柏拉图和达·芬奇。
近代以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。
古往今来,有多少人因为对数学的深入研究获得成就继而名垂千古。
中国作为一个文明大国,数学领域也一直处于世界先进水平。
而提及中国近代数学发展,有一对师生在其中的地位举重若轻,他们便是华罗庚和陈景润。
华罗庚,这个被誉为“人民数学家”“中国现代数学之父”的世界著名数学家,用其一生为中国数学的发展做出了无以伦比的贡献。
他的勤奋精神和治学严谨的态度与方法,足为万世师表。
他以其卓越的成就和无可比拟的伟大品格,影响了一代又一代的年轻人和科学工作者,成为众多人心目中的科学之神。
生于上个世纪初的华罗庚家境贫寒,在初中毕业后便辍学在家开始了一条自学之路,而在他不到二十岁的年纪,由于伤寒最终致使左腿残疾。
种种困苦磨难并未能摧毁他,他顽强地与命运抗争,他说“我要用健全的头脑,代替不健全的双腿”。
很明显,他做到了,他的一生成就斐然:中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者;著有如《堆垒素数论》等十部著作、百余篇学术论文和科普作品;在解析数论方面的成就尤其广为人知,并开创了国际间颇具盛名的“中国解析数论学派”,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献;在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展,也有国际上有名的“典型群中国学派”;其在多复变函数论,典型群方面的研究领先西方数学界10多年;倡导应用数学与计算机的研制;在发展数学教育和科学普及方面做出了重要贡献。
陈景润主要研究解析数论,1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。
而他所发表的成果也被称之为陈氏定理。
这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。
他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。
被称为哥德巴赫猜想第一人陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。
他是第四、五、六届全国人民代表大会代表。
著有《数学趣味谈》、《组合数学》等通过这些近现代杰出的数学家是中国的数学从古老的教条中走出来从而达到了一个新的高度,并且积极与国际接轨以此来达到世界数学先进水平。