相关系数的性质的几种证明方法
- 格式:pdf
- 大小:157.05 KB
- 文档页数:3
相关性分析的五种⽅法相关分析(Analysis of Correlation)是⽹站分析中经常使⽤的分析⽅法之⼀。
通过对不同特征或数据间的关系进⾏分析,发现业务运营中的关键影响及驱动因素。
并对业务的发展进⾏预测。
本篇⽂章将介绍5种常⽤的分析⽅法。
在开始介绍相关分析之前,需要特别说明的是相关关系不等于因果关系。
相关分析的⽅法很多,初级的⽅法可以快速发现数据之间的关系,如正相关,负相关或不相关。
中级的⽅法可以对数据间关系的强弱进⾏度量,如完全相关,不完全相关等。
⾼级的⽅法可以将数据间的关系转化为模型,并通过模型对未来的业务发展进⾏预测。
下⾯我们以⼀组⼴告的成本数据和曝光量数据对每⼀种相关分析⽅法进⾏介绍。
以下是每⽇⼴告曝光量和费⽤成本的数据,每⼀⾏代表⼀天中的花费和获得的⼴告曝光数量。
凭经验判断,这两组数据间应该存在联系,但仅通过这两组数据我们⽆法证明这种关系真实存在,也⽆法对这种关系的强度进⾏度量。
因此我们希望通过相关分析来找出这两组数据之间的关系,并对这种关系进度度量。
1,图表相关分析(折线图及散点图)第⼀种相关分析⽅法是将数据进⾏可视化处理,简单的说就是绘制图表。
单纯从数据的⾓度很难发现其中的趋势和联系,⽽将数据点绘制成图表后趋势和联系就会变的清晰起来。
对于有明显时间维度的数据,我们选择使⽤折线图。
为了更清晰的对⽐这两组数据的变化和趋势,我们使⽤双坐标轴折线图,其中主坐标轴⽤来绘制⼴告曝光量数据,次坐标轴⽤来绘制费⽤成本的数据。
通过折线图可以发现,费⽤成本和⼴告曝光量两组数据的变化和趋势⼤致相同,从整体的⼤趋势来看,费⽤成本和⼴告曝光量两组数据都呈现增长趋势。
从规律性来看费⽤成本和⼴告曝光量数据每次的最低点都出现在同⼀天。
从细节来看,两组数据的短期趋势的变化也基本⼀致。
经过以上这些对⽐,我们可以说⼴告曝光量和费⽤成本之间有⼀些相关关系,但这种⽅法在整个分析过程和解释上过于复杂,如果换成复杂⼀点的数据或者相关度较低的数据就会出现很多问题。
相关系数相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
于是,著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。
相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
资料个人收集整理,勿做商业用途1、定义相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。
由于研究对象的不同,相关系数有如下几种定义方式。
资料个人收集整理,勿做商业用途相关系数公式简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。
复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
资料个人收集整理,勿做商业用途典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
资料个人收集整理,勿做商业用途2、性质(1)定理:| ρXY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1;相关系数ρXY取值在-1到1之间,ρXY = 0时,称X,Y不相关;| ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系;| ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大,| ρXY | > 0.8时称为高度相关,当| ρXY | < 0.3时称为低度相关,其它时候为中度相关。
相关系数相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
于是,著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。
相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
1、定义相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。
由于研究对象的不同,相关系数有如下几种定义方式。
相关系数公式简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。
复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
2、性质(1)定理:| ρXY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1;相关系数ρXY取值在-1到1之间,ρXY = 0时,称X,Y不相关;| ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系;| ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大,| ρXY | > 0.8时称为高度相关,当| ρXY | < 0.3时称为低度相关,其它时候为中度相关。
相关分析相关分析是数据分析中常用的统计学方法之一,它研究两个或多个变量之间的相关性质。
其中,相关系数是用来测定两个变量之间相关程度的指标,其取值范围在-1到1之间,可以判断两个变量之间的正相关、负相关或无关。
在实际应用中,相关分析主要有以下三个步骤:1. 确定要分析的变量以及采集数据在进行相关分析前,需要确定要分析的自变量和因变量,并从相应的数据源采集相关数据。
例如,在研究环保意识与行为之间的关系时,可能会选择中国居民环境意识调查中采集的数据。
2. 计算相关系数根据采集到的数据,可以通过公式计算出相关系数。
最广泛使用的是皮尔逊相关系数,但也存在斯皮尔曼等非参数方法。
不同的方法可以适用于处理不同类型的数据,例如一些非线性数据,斯皮尔曼相关系数会更加合适。
3. 解释结果并进行决策根据计算得到的相关系数,可以推断出自变量与因变量之间的关系。
例如,如果相关系数大于0,则说明变量呈正相关关系;如果小于0,则说明呈负相关关系;如果等于0,则没有任何关联。
这些信息有助于政策制定者或企业分析师了解两个变量之间的关系,并为做出决策提供依据。
相关分析在实际运用中有着广泛的应用,例如:1. 市场研究市场研究人员可以用相关分析来确定产品销售与市场趋势之间的相关性。
例如:市场调查可能显示随着年龄的增加,一款婴儿奶粉的销量会随之减少,而相关分析可以证明此趋势是否显著。
2. 医学研究医学研究人员可以使用相关分析来确定不同类型的基因是否与特定疾病的发生率有关。
例如:通过对染色体中特定基因与癌症患病率之间的相关性进行分析,就可以更好地了解这些基因和癌症的关系,并为医疗领域的新药开发和治疗方案的制定提供指导建议。
3. 金融分析金融研究人员可以使用相关分析来确定股票市场中不同公司之间的相关性。
例如:比较两个同行的股票价格变化趋势,可以弄清楚两个公司业绩之间是否互相影响或决定公司业绩因素的共性。
4. 社会调查政策制定者或社会科学研究人员可以使用相关分析来确定公民对某个问题所持有的态度与他们的回答、身份、统计数据之间的相关性。
斯皮尔曼相关系数推导斯皮尔曼等级相关系数(Spearman's correlation coefficient)是一种度量两个变量之间相关性的统计量,它基于等级变量(有序变量)的秩(rank)而不是实际值。
假设有两个变量 X 和 Y,每个变量都有 n 个观测值。
1. 首先,对每个变量进行排序,得到每个观测值的秩。
例如,如果 X 的观测值为 x1, x2, ..., xn,那么 X 的秩为 r1, r2, ..., rn。
2. 计算斯皮尔曼相关系数的公式为:Spearman(X, Y) = 6 × Σ(Xi - Yi) / (n × (n^2 - 1))其中 Xi 和 Yi 分别是 X 和 Y 的秩。
下面是这个公式的推导过程:第一步,由于 X 和 Y 都是等级变量,它们的秩可以看作是观测值的相对位置。
因此,我们可以将 Xi 和 Yi 看作是观测值在各自变量中的相对位置。
第二步,根据斯皮尔曼相关系数的定义,我们希望找到一个系数,使得对于任意两个观测值 Xi 和 Yi,它们的相对位置差(Xi - Yi)越小,则 X 和 Y 的相关性越高。
第三步,为了使相关性最大化,我们需要最小化Σ(Xi - Yi)。
由于 Xi 和 Yi 都是秩,它们都是非负整数,因此最小化Σ(Xi - Yi) 等价于最小化Σ(Xi + Yi)。
第四步,根据算术-几何平均不等式(AM-GM inequality),对于非负实数 a 和 b,有(a + b) / 2 ≥ sqrt(ab)。
应用这个不等式到 Xi 和 Yi,我们得到:Σ(Xi + Yi) / 2 ≥ sqrt(ΣXi × ΣYi)第五步,由于 Xi 和 Yi 是秩,它们的总和是 n × (n + 1) / 2。
因此,我们可以进一步化简上面的不等式为:Σ(Xi + Yi) / n × (n + 1) ≥ 1第六步,将这个不等式代入斯皮尔曼相关系数的公式中,我们得到:Spearman(X, Y) ≥ 1第七步,当且仅当 Xi = Yi 对所有 i 都成立时,即 X 和 Y 是完全相关的,斯皮尔曼相关系数达到最大值 1。