(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
高中数学
• 根据已知条件可求出n,再根据n的奇偶性 确定二项式系数最大的项.列出不等关系 解不等式组,可求系数最大的项.
高中数学
• [规范解答] 令x=1, • 则展开式中各项系数和为(1+3)n=22n, • 又展开式中二项式系数和为2n, • ∴22n-2n=992,n=5.2分 • (1)∵n=5,展开式共6项,二项式系数最大的
高中数学
• 解得5≤r≤6, • 因为r=0,1,2,…,8, • 所以r=5或r=6. • 故系数最大的项为T6=1 792x5,T7=1 792x6.
高中数学
高中数学
• 如图,在“杨辉三角”中,斜线AB的上方, 从1开始箭头所示的数组成一个锯齿形数列: 1,2,3,3,6,4,10,5,…记其前n项和为Sn,求S19的 值.
高中数学
• (4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零, 而a1,a3,a5,a7小于零,
• ∴|a0|+|a1|+|a2|+…+|a7| • =(a0+a2+a4+a6)-(a1+a3+a5+a7), • ∴由(2)(3)即可得其值为2 187.
高中数学
[题后感悟] (1)赋值法——对恒等式中的变量代入数 值,可得到为解决某些问题而所需的关系.
②Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…
= 2n-1
.
高中数学
• 1.设(3-x)n=a0+a1x+a2x2+…+anxn,若n =4,则a0-a1+a2+…+(-1)nan=( )
• A.256
B.136
• C.120
D.16
• 解析: 在展开式中令x=-1得a0-a1+a2- a3+a4=44.故选A.