二项式系数的性质及应用1
- 格式:ppt
- 大小:361.50 KB
- 文档页数:16
二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理的数值计算与应用二项式定理是代数学中的一条重要定理,描述了二项式的幂的展开形式。
它在数值计算和实际应用中具有广泛的应用。
本文将探讨二项式定理的数值计算方法以及它在实际问题中的应用。
一、二项式定理的数值计算二项式定理的一般形式为:(x + y)^n = C(n,0) * x^n * y^0 + C(n,1) * x^(n-1) * y^1 + ... + C(n,n-1)* x^1 * y^(n-1) + C(n,n) * x^0 * y^n其中,C(n,k)表示从n个元素中选取k个元素的组合数。
在实际计算中,当n较大时,直接展开计算会导致复杂的运算和较长的计算时间。
为了节省计算资源,我们可以利用二项式定理的性质进行数值计算。
首先,我们可以利用组合数的性质,C(n,k) = C(n, n-k)。
这个性质可以帮助我们化简计算过程。
其次,我们可以使用递推公式,C(n,k) =C(n-1,k-1) + C(n-1,k),来计算组合数,从而减少计算量。
例如,我们要计算 (2 + 3)^5 的展开式。
根据二项式定理,展开式为:C(5,0) * 2^5 * 3^0 + C(5,1) * 2^4 * 3^1 + C(5,2) * 2^3 * 3^2 + C(5,3) * 2^2 * 3^3 + C(5,4) * 2^1 * 3^4 + C(5,5) * 2^0 * 3^5通过利用组合数的性质和递推公式,我们可以得到:1 * 2^5 * 3^0 + 5 * 2^4 * 3^1 + 10 * 2^3 * 3^2 + 10 * 2^2 * 3^3 + 5 *2^1 * 3^4 + 1 * 2^0 * 3^5进一步计算,得到最终结果:1 * 32 * 1 + 5 * 16 *3 + 10 * 8 * 9 + 10 *4 * 27 +5 * 2 * 81 + 1 * 1 * 243= 32 + 240 + 720 + 1080 + 810 + 243= 3125因此,(2 + 3)^5 = 3125。
二项式系数性质与应用二项式系数是组合数学中的一种重要概念,它在代数、概率、统计等领域中有着广泛的应用。
本文将介绍二项式系数的性质,并探讨其在实际问题中的应用。
一、二项式系数的基本性质1.1 二项式系数的定义二项式系数表示为C(n,k),其中n和k为非负整数,且0 ≤ k ≤ n。
其计算方法为C(n,k) = n! / (k! * (n-k)!),其中“!”表示阶乘运算。
1.2 二项式系数的对称性二项式系数具有对称性,即C(n,k) = C(n,n-k)。
这是由于在组合中,选取k个元素与选取n-k个元素是等价的。
1.3 二项式系数的递推关系二项式系数有递推关系:C(n,k) = C(n-1,k) + C(n-1,k-1)。
这一关系可以用来计算任意二项式系数,而无需重新计算阶乘。
1.4 二项式定理二项式定理是二项式系数的一个重要性质,表示为(a+b)^n = ΣC(n,k) * a^(n-k) * b^k,其中Σ表示求和运算,k的取值范围为0到n。
二、二项式系数的应用2.1 代数中的应用在代数中,二项式系数被广泛应用于多项式展开和系数计算。
通过二项式定理,我们可以展开任意次多项式,从而计算多项式的各项系数。
2.2 概率与统计中的应用在概率与统计中,二项式系数与二项分布密切相关。
二项分布用于描述一组独立重复试验中成功(或失败)的次数的概率分布。
二项分布的概率质量函数可以用二项式系数来表示。
2.3 组合数学中的应用二项式系数是组合数学的基础概念,它与排列、组合、二项式定理等紧密相关。
在组合数学中,可以利用二项式系数解决一些计数问题,如排列组合问题、子集问题等。
2.4 离散数学中的应用离散数学中的一些问题可以转化为二项式系数的计算问题,如定理证明、图论、递归关系等。
二项式系数的递推关系和性质在解决这些问题时起到了重要的作用。
2.5 应用于经济学和金融学二项式系数在经济学和金融学中也有一定的应用,例如二项式期权定价模型和二项式资产定价模型。
二项式系数在数学中,二项式系数是组合数学中的一个重要概念。
它们代表了在数学中处理多项式的系数时的一种模式。
二项式系数在代数、概率和统计等领域具有广泛的应用。
本文将讨论二项式系数的定义、性质和应用。
一、定义与表示二项式系数是指形如nCr的数值,它表示从n个不同元素中选择r 个元素的组合数。
其中,n是一个非负整数,r是一个介于0和n之间的整数。
二项式系数可以使用以下公式计算:nCr = n! / (r! * (n-r)!),其中n!表示n的阶乘,也就是n的所有正整数乘积。
二项式系数符合以下性质:1. 对任意非负整数n,有nC0 = nCn = 1。
2. 对任意非负整数n,有nC1 = n。
3. 对任意正整数r,有nCr = nC(n-r)。
二项式系数还有另外一种表示方法,即使用组合数表。
组合数表是一个三角形矩阵,其中每个数值是由上一行的两个数值相加而来。
组合数表的第n行第r列即表示nCr。
组合数表如下所示:n: r=0 r=1 r=2 r=3 r=4 ...0: 11: 1 12: 1 2 13: 1 3 3 14: 1 4 6 4 1...二、性质与运算二项式系数具有多项式展开和二项式定理的性质,这使得它们非常有用。
以下是二项式系数的一些重要性质和运算:1. 二项式系数的对称性:nCr = nC(n-r)。
这个性质表明,选择r个元素与选择n-r个元素的方式是等价的。
2. 二项式系数的加法规则:对于任意非负整数m和n,m和n的和取值范围内,有以下等式成立:(m+n)Ck = mCk + mC(k-1) + ... + mC0。
3. 二项式系数的乘法规则:对于任意非负整数m和n,有以下等式成立:(m+n)Ck = ∑(i=0 → k) (mCi * nC(k-i))。
这个等式表明,可以通过将m和n分别与k个元素的组合数相乘来计算(m+n)Ck。
4. 二项式系数的递推关系:利用组合数表,可以通过上一行的两个数值相加来计算下一行。
二项式系数第二节二项式定理1、二项式定理:(1)(a+b)n=Can+Can-1b+…+Can-rbr+…+Cbn。
(2)通项公式:Tr+1=Can-rbr (r=0,1,2,…,n)为展开式第r+1项。
(3)展开式的特点:共有n+1项;第r+1项的二项式系数为C;2、二项式系数的性质:(1)C=C。
(2)若n为偶数,中间一项+1的二项式系数最大;若n奇数,中间两项、+1的二项式系数相等并且最大.(3)C+C+C+…+C=2n。
(4)C+C+C。
=C+C+C+。
=2n-1、3、二项式中的最值问题求(a+b)n展开式中系数最大的项,通常用待定系数法,设展开式各项系数分别为A1,A2,…,An+1设第r+1项系数最大,则4、二项式定理的主要应用(1)赋值求值;(2)证明一些整除问题或求余数;(3)证明有关等式与不等式;(4)进行近似计算。
例1、(1)求的值。
(2)求展开式中含项的系数为?(3)求展开式中所有有理项。
练习1:(1+3)(+)6展开式中的常数项为_____.例2、已知(+)n(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1、(1)求展开式中各项系数和及二项式系数和;(3)求展开式中系数最大的项和二项式系数最大的项.例3、已知(3-1)7=a07+a16+…+a6+a7。
(1)求a0+a1+a2+…+a7的值;(2)求,a0,+,a1,+,a2,+…+,a7,的值;(3)求a1+a3+a5+a7的值.解析(1)令=1,得a0+a1…+a7=(31-1)7=27=128。
(2)易知a1,a3,a5,a7为负值,,a0,+,a1,+,a2,+…+,a7,=a0-a1+a2-…-a7=-(-a0+a1-a2+…+a7)-[3(-1)-1]7=47。
(3)令f()=(3-1)7,则f(1)=a0+a1+a2+a3+…+a7,f(-1)=-a0+a1-a2+…+a7。
∴2(a1+a3+a5+a7)=f(1)+f(-1)=27-47。