肠道菌群紊乱和自闭症2
- 格式:doc
- 大小:84.50 KB
- 文档页数:6
肠道菌群与肠道健康的关系探究如今,越来越多的人意识到肠道健康对身体健康的重要性,肠道菌群也因此备受关注。
肠道菌群是指人体内寄生在肠道内的微生物种群,包括细菌、真菌、原生动物等。
人体肠道菌群的种类和数量比较庞杂,常见的细菌有双歧杆菌、乳酸菌、葡萄球菌和肠球菌等,它们的作用和功能各不相同。
众所周知,人体免疫系统和肠道菌群之间存在密切的联系,有些菌群可以帮助我们调节免疫系统的功能,保持免疫系统的平衡,从而抗击病毒、细菌、寄生虫等微生物侵袭。
一些对人体有害的细菌也可能通过破坏肠道菌群平衡而导致人体免疫力下降。
因此,保持肠道菌群的平衡非常重要,有助于维护人体免疫系统的健康。
肠道菌群不仅与免疫系统有关,还与消化系统紧密关联。
约80%的免疫系统位于肠道内,而肠道菌群可以影响人体肠道的发育、成熟和功能。
肠道菌群可以分解食物中难以消化的成分,并产生生长因子和维生素等营养物质。
一些特定菌群还可以调节胃肠道运动,促进肠道蠕动,预防便秘,促进肠道排毒。
越来越多的研究表明,肠道菌群可以影响人体的健康状况。
一些研究发现,肠道菌群失衡可能会引起某些疾病的发生、发展,例如炎症性肠病、肥胖症、糖尿病、过敏症等。
有些研究表明,肠道菌群失衡可能与精神障碍、自闭症、抑郁症等神经系统疾病有关。
因此,保持肠道菌群的平衡也有助于预防许多疾病的发生。
那么,如何保持肠道菌群的平衡呢?首先,是饮食调整。
饮食已被证明是影响肠道菌群的重要因素之一。
适当摄入富含纤维素的食物,例如蔬菜、水果、全麦面包、燕麦等,有助于促进肠道分泌消化酶,帮助肠道细菌分解食物,并且促进肠道蠕动,减少便秘的发生。
此外,摄入含有益生菌和益生元的食物也是极其有益的。
例如,酸奶、发酵饮料、柿子椒、洋葱等都富含益生菌和益生元。
益生菌可以增加肠道内有益菌的数量,益生元可以提供营养,促进有益细菌的增殖。
其次,是生活习惯的改变。
健康的生活方式也是保持肠道菌群平衡的重要保障。
充足的睡眠、适当的锻炼、减少压力、避免吸烟和饮酒等均有助于保护肠道健康。
肠道菌群与健康的紧密关系肠道菌群是指寄居在人体肠道中的微生物群落,包括细菌、真菌、病毒等多种微生物。
近年来,研究发现肠道菌群对人体健康起着重要作用。
它与免疫系统、消化系统以及心理健康等方面密切相关,通过调节身体的代谢功能和免疫反应来影响人体的整体健康。
一、肠道菌群与免疫系统肠道菌群与免疫系统之间的相互作用在科学界引起了广泛的关注。
正常情况下,肠道菌群能够维护免疫系统的稳定性,并参与身体对外界环境中微生物和抗原的应答过程。
首先,肠道菌群可以促进免疫系统的发育和功能成熟。
早期接触到来自母亲产道中的微生物有助于婴儿免疫系统的正常发展,并建立正确的免疫应答机制。
其次,良好平衡的肠道菌群能够防止致病菌的侵袭。
肠道内存在着大量益生菌,它们可以占据肠道的生态位,减少致病菌的滋生和传播,从而保护免疫系统。
最后,肠道菌群通过激活免疫细胞和分泌免疫因子来调节免疫反应。
例如,一些益生菌能够促进产生多种免疫因子,如干扰素和白细胞介素等。
这些免疫因子能够增强机体对抗感染的能力,并减少过度的免疫反应。
二、肠道菌群与消化系统肠道菌群在人体消化系统中起到至关重要的作用。
它参与食物消化、营养吸收以及废物排泄等多个环节。
首先,在食物消化过程中,肠道菌群可分解食物中难以消化的纤维素、低聚糖等成分。
这些微生物会产生大量酶来帮助分解食物并释放出有益营养素供人体吸收利用。
其次,肠道菌群可以合成某些维生素和氨基酸。
例如,肠道内的某些菌群能够合成维生素B12和叶酸等重要营养物质,补充人体可能缺乏的这些营养素。
最后,肠道菌群对维持肠道黏膜屏障的完整性至关重要。
肠道黏膜是保护肠道不受有害微生物入侵和毒素损害的第一道防线。
正常情况下,良好平衡的菌群能够增强肠道黏膜的完整性,并减少炎症反应的发生。
三、肠道菌群与心理健康近年来,越来越多的研究发现肠道菌群与心理健康之间存在紧密联系。
而这个联系主要通过“肠-脑轴”来实现。
首先,在“肠-脑轴”中,通过一系列神经递质和激素信号传导作用,肠道菌群可以影响大脑功能。
益生菌治疗自闭症的研究进展1. 引言1.1 自闭症概述自闭症,又称孤独症,是一种神经发育障碍,通常在儿童早期出现。
自闭症患者在社交互动、语言能力、行为表现等方面存在明显的障碍。
他们常常表现出对于人际关系的困难、沉迷于单一兴趣或活动、言语沟通能力受限以及重复刻板行为等特征。
自闭症患者的症状程度和表现形式各有不同,因此被称为自闭症谱系障碍。
1.2 益生菌的定义和作用益生菌是一类有益于宿主健康的微生物,在人体内生存并产生益处。
它们通常被称为“益生菌”,是一种可以改善宿主生理功能的微生物。
益生菌的作用包括维持肠道菌群平衡、促进营养物质的吸收、增强消化系统功能、抵抗有害微生物、调节免疫系统等。
益生菌可以通过制造抑制有害细菌生长的物质、改变肠道PH值、增加益菌数量等方式来发挥作用。
在自闭症的治疗中,益生菌也被认为具有潜在的益处。
研究表明,益生菌对改善自闭症患者的症状和行为问题可能具有显著效果。
通过调节肠道菌群,益生菌可以影响大脑功能,并对自闭症的发展产生积极影响。
利用益生菌治疗自闭症已成为近年来的研究热点。
益生菌的定义和作用对于理解其在自闭症治疗中的作用机制和效果具有重要意义。
1.3 研究背景自闭症是一种神经发育障碍性疾病,主要表现为社交障碍、语言沟通障碍和重复行为等症状。
目前尚无明确的治疗方法,因此研究表明益生菌可能成为一种有效的治疗手段。
益生菌是一种对宿主有益的微生物,主要存在于人体的肠道内,可以维持肠道菌群的平衡,提高免疫力,促进营养吸收。
近年来,越来越多的研究发现益生菌可能具有改善自闭症症状的潜力。
在过去的研究中发现,自闭症患者的肠道菌群存在较大的异常,益生菌的应用可以调整这些异常,据称可以改善自闭症患者的社交行为、语言交流能力和认知功能。
益生菌治疗自闭症的研究逐渐引起了人们的关注。
尽管益生菌在治疗自闭症中表现出一定的潜力,但其具体的作用机制尚不清楚。
有必要进一步深入研究,探究益生菌如何影响自闭症患者的症状和生理功能,以及其可能存在的副作用。
自闭症是什么原因引起自闭症,也被称为孤独症谱系障碍,是一种复杂的神经发育障碍,它会影响一个人的社交互动、沟通能力、兴趣和行为模式。
对于自闭症的成因,科学界至今仍在不断探索和研究中,但已经有了一些较为明确的线索和可能的因素。
遗传因素在自闭症的发生中起着重要的作用。
研究表明,如果一个人的亲属中有自闭症患者,那么他患自闭症的风险会显著增加。
许多基因的变异和组合可能与自闭症的发展有关,这些基因可能影响大脑的发育、神经连接的形成以及神经递质的功能。
例如,某些基因可能影响神经元的迁移和分化,导致大脑结构和功能的异常。
环境因素也被认为可能对自闭症的发生产生影响。
在胎儿发育期间,母亲的健康状况、感染、药物使用、营养不良等都可能对胎儿的大脑发育产生不利影响。
例如,母亲在怀孕期间感染风疹、巨细胞病毒等,可能增加孩子患自闭症的风险。
另外,出生时的并发症,如早产、低体重出生、缺氧等,也可能对婴儿的大脑发育造成损害,从而增加自闭症的发生几率。
神经生物学因素在自闭症的成因中也占据重要地位。
研究发现,自闭症患者的大脑结构和功能存在异常。
例如,大脑的体积、皮层厚度、神经元的数量和分布等方面可能与正常人有所不同。
在神经连接方面,自闭症患者大脑中的突触连接可能存在异常,导致信息传递和处理的障碍。
神经递质的失衡,如血清素、多巴胺等,也可能影响大脑的功能和行为表现。
免疫系统的异常也可能与自闭症有关。
一些研究表明,自闭症患者的免疫系统可能存在过度活跃或反应不当的情况。
免疫系统的异常可能导致炎症反应,影响大脑的发育和功能。
此外,免疫细胞产生的抗体可能攻击自身的神经细胞,从而影响神经系统的正常运作。
肠道微生物群的失衡也被认为是自闭症的一个潜在因素。
肠道微生物群在维持人体健康方面起着重要作用,包括影响免疫系统、代谢和神经功能。
研究发现,自闭症患者的肠道微生物群组成与正常人有所不同,这种失衡可能通过肠脑轴影响大脑的发育和功能。
环境毒素的暴露也可能是自闭症的一个诱因。
自闭症与肠道菌群的关系目前,医学领域对自闭症的病理和病因的了解较浅,虽然有大量的行为治疗被证明是科学、有效的,但有效的药物却很少。
另有研究发现,很多自闭症患者同时还存在严重的胃肠道疾病,所以自闭症与肠道菌群之间可能存在一定关联。
下文针对自闭症与肠道菌群的关系进行介绍。
一、肠道菌群与自闭症的关系肠道菌群是非常复杂的群落,在人体肠道系统中,有超过1 000种不同类型的细菌,其中最主要的细菌门是拟杆菌门、厚壁菌门两种,这两种细菌可占据肠道菌群的93.8%左右。
而像变形菌门、放线菌门、疣微菌门等的数量则较少。
对于自闭症患者来说,除了会表现出一些神经系统异常现象以外,还会存在大量的肠道疾病症状,如腹痛、腹泻、便秘、肠胃胀气、胃食管反流等。
因此,在自闭症患者中表现出的这些肠道问题,可以佐证肠道菌群会在自闭症患者的发病机制中产生一定影响。
肠道菌群之所以可以对自闭症造成影响,主要原因还是在于自闭症患者的肠道通透性较强,所以患者胃肠道屏障会存在缺陷,最终造成毒素和细菌产物等进入到血液中,从而影响到大脑的正常功能。
比如,肠道酵母菌不仅能够黏附并定植于肠道黏膜上,还具有穿透肠黏膜屏障的转运能力,能够破坏肠道上皮细胞间的紧密连接,酵母菌过度增殖会使肠道通透性增大。
还有一些微生物群会产生神经活性化合物,它们会通过肠—脑轴进入大脑,并影响神经回路,从而对大脑功能造成影响并诱发一些异常行为。
而某些肠道菌群的代谢物及神经活性化合物会促使肠神经元活跃,然后通过迷走神经对大脑功能造成影响。
文/樊郑阳 新疆医科大学中医学院 陈伟民 同济大学附属养志康复医院二、肠道菌群治疗自闭症1.益生元改善自闭症益生元主要是纤维,属于不容易消化食物中存在的必要成分,这种物质可以选择性刺激结肠中某些微生物的生长或者是活性,从而对宿主产生有益的影响。
而益生元组的低聚半乳糖,也会促进双歧杆菌的增值。
而在体外肠道模型中,有研究特意采集了有无服用益生元的自闭症儿童的粪便,将肠道有益菌群数量进行对比,发现低聚半乳糖对胃肠道中有益菌群的增多有着很大程度的贡献,同时还在多种研究层面获得较为理想的效果。
肠道菌群失调症人体消化功能图健康人的胃肠道内寄居着种类繁多的微生物,这些微生物称为肠道菌群。
肠道菌群按一定的比例组合,各菌间互相制约,互相依存,在质和量上形成一种生态平衡,一旦机体内外环境发生变化,特点是长期应用广谱抗生素,敏感肠菌被抑制,未被抑制的细菌而乘机繁殖,从而引起菌群失调,其正常生理组合被破坏,而产生病理性组合,引起临床症状就称为肠道菌群失调症(alteration of intestinal flora)。
本症的发生率约为2%~3%。
治疗措施一全身支持疗效对施行大手术患者,手术前注意补充营养,亦可肌注丙种球蛋白以提高机体免疫机能。
有研究表明,溃结患者肌注入免疫球蛋白可使结肠内乳酸杆菌和双岐杆菌增加,某些条件致病菌减少。
也可试用注射转移因子,免疫核糖核酸、胸腺素等,亦可用白细胞介素2,每次5万U 肌注,10日为一疗程,可连续应用。
二原因治疗如由于巨结肠,胆囊炎引起的肠球菌过度繁殖;维生素缺乏造成的肠球菌减少或消失;小肠蠕动过快而引起的酵母菌过多等,都必须无除去这些原因,然后再扶持正常菌群,方能奏效。
三调整菌群治疗1.饮食调整:发酵性腹泻应限制碳水化合物;腐败性腹泻应限制蛋白质的摄入。
增强肠粘膜的局部防御屏障功能,防止细菌易位,应增加纤维食物。
2.抗菌药物:立即停止原抗生素,应根据菌群分析以及抗菌药物敏感试验,选用合适的抗生素以及抑制过度繁殖的细菌,从而间接扶植肠道繁殖不足的细菌。
此外还可采用广谱抗菌药物将肠道细菌大部分消灭,然后再灌入正常肠道菌群的菌液以使其恢复。
3.活菌制剂:目前常用的活菌制剂有嗜酸乳杆菌、保加利亚乳杆菌、乳酸乳杆菌、芽胞乳杆菌、分叉乳杆菌、粪链球菌、大肠杆菌、粪杆菌和枯草杆菌等。
其中以分叉乳杆菌制剂疗效最好。
枯草杆菌制剂疗效也较好,其疗效机制可能是由于该菌是需氧的,能吸收氧氧,降低肠腔氧化还原电位,支持厌氧菌(类杆菌、乳杆菌)生长,从而间接扶植了正常菌菌群。
还可以用正常人大便悬液做成复方活菌制剂用来治疗葡萄球菌引起的伪膜性肠炎,收到较好的效果。
自闭症患者肠道菌群的结构变化及NS乳酸菌干预机制研究研究背景:自闭症是一种严重的神经发育障碍,它对社会和患者家庭造成极其严重的经济和医疗负担,并且目前临床中尚未有有效的治疗方法。
据保守估计我国自闭症患病率为1 070,并且呈逐年上升趋势。
自闭症患者不仅表现出行为症状,还伴随着诸多典型的生物学症状,如免疫功能异常、胃肠功能紊乱、多种过敏等问题。
尽管人们多年来致力于寻找致病基因,但其患病率急剧上升的现状完全不符合群体遗传学的哈迪一温伯格平衡,表明外在因素对其发生的影响远大于遗传因素。
事实上,肠道微生物在自闭症的发生与发展中起重要作用,自闭症与个体的肠道微生物失衡及肠一脑轴异常密切相关。
由于婴幼儿的肠脑发育与大脑发育几乎同步,因而在发育关键期,任何影响其肠道微生物的因素均可增加自闭症风险。
肠道微生物可通过其代谢产物、免疫、神经内分泌、以及迷走神经等途径影响大脑和行为。
目前以肠道微生物为靶点干预自闭症正在成为研究热点,主要方式包括饮食干预、药物干预、粪菌移植和益生菌干预,其中益生菌以其有效性和安全性得到较多认可。
本研究在关注近年来与肠道微生物相关的自闭症研究基础上,尝试对自闭症患者进行特定益生菌干预,从而为了解共生微生物在自闭症发病中的角色和相应对策展开深层次的认识。
研究目的:1.建立健康儿童以及自闭症儿童肠道微生物数据库,分析自闭症儿童肠道微生物的构成,尝试通过调整和改变肠道微生物组份来干预自闭症。
2.通过自闭症儿童肠道微生物与对照儿童肠道微生物结构的比较研究,确定自闭症儿童肠道微生物的变化,确定自闭症相关微生物标记物。
3.通过检测微生物一肠一脑轴功能相关生理生化指标变化,分析自闭症儿童与健康对照儿童生理生化指标差异,探讨肠道微生物影响自闭症的分子途径。
确定与疾病密切相关的生理指标及其变化,为临床诊断和干预提供参考。
4.通过分析直接监护人填写的评估问卷,对比自闭症儿童的行为异常和消化道症状在特定乳酸菌干预前后的变化,评估患者行为认知症状和胃肠道症状的改善程度。
肠道菌群与神经系统疾病的关联研究在过去的几十年里,肠道菌群被发现与许多健康问题有关,包括消化系统疾病、免疫系统紊乱和心理健康问题。
近年来,越来越多的研究表明,肠道菌群还可能对神经系统功能和神经性疾病产生影响。
本文将探讨肠道菌群与神经系统疾病之间的关联,并介绍一些相关的科学证据。
一、肠道菌群对大脑的直接影响1.1 肠-脑轴:连接肠道和大脑人体内存在着一个称为“肠-脑轴”的双向通信网络。
这个轴线通过神经通路和化学信号传递,在肠道和大脑之间进行交流。
具体来说,在这个通信网络中,微生物组成了一个重要角色。
1.2 肠道菌群与神经递质细菌可以产生和调节许多神经递质,如γ氨基丁酸(GABA)、血清素和多巴胺。
这些物质在神经信号传递中起到重要的作用。
研究发现,肠道菌群的不平衡会影响这些神经递质的产生和调节过程,从而可能导致与神经系统相关的疾病。
二、肠道菌群与自闭症谱系障碍(ASD)的关联2.1 肠道菌群差异多项研究发现,自闭症患者的肠道菌群与健康人存在明显差异。
这种差异包括菌群组成、丰度和功能等方面的变化。
进一步的分析还表明,这些差异可能与自闭症患者出现的行为和认知问题有关。
2.2 菌群移植试验通过将健康人的粪便样本移植到自闭症患者身上,一些研究显示可以改善他们的社交互动能力和认知功能。
这项发现提示了肠道菌群在自闭症治疗中的潜在作用,并为新型治疗策略提供了思路。
三、肠道菌群与帕金森氏症之间的联系3.1 菌群改变与帕金森氏症发展的关联帕金森氏症是一种神经系统退行性疾病,与肠道菌群的变化有关。
一些研究发现,帕金森氏症患者的肠道菌群丰度、多样性和组成与健康人存在明显差异。
这种不平衡可能与帕金森氏症的进展和临床特征有关。
3.2 肠道菌群介导的中枢神经系统炎症肠道菌群失调可以导致肠黏膜屏障的破损,从而引发细菌和细菌产生的毒素进入血液循环。
这些物质可能通过血-脑屏障进入中枢神经系统,并引起相关的神经炎症反应。
这一过程被认为与帕金森氏症发展中的免疫活化和氧化应激有关。
肠道菌群与人体健康的关系肠道菌群是指存在于人体肠道内的大量微生物群落,其中包含了许多种类的细菌、真菌、病毒等微生物。
这些微生物在人体中发挥着不可忽视的重要作用,其中最主要的就是维持人体健康。
肠道菌群的构成与健康状况息息相关。
科学家已经发现,有些菌群与人体健康息息相关,而其他微生物则可能会损害人体的健康。
因此,了解肠道菌群的结构以及如何维持肠道健康,变得越来越重要。
肠道菌群与人体健康的关系是复杂而深刻的,下面我们会具体地讨论一些与此相关的方面。
1. 肠道菌群与消化系统健康肠道菌群对消化系统健康关系密切。
在人体消化器官内,不同类型的微生物在发酵和降解膳食纤维等过程中起着非常重要的作用。
例如,一些有益菌群可以帮助人体降解乳糖和蔗糖等难消化食物。
消化后产生的乳酸和其他有机酸可能有助于维持肠道内酸碱平衡。
此外,肠道菌群也可以帮助人体摄取营养物质。
一些菌群可以帮助人体吸收维生素K和维生素B12等重要的营养物质。
2. 肠道菌群与免疫系统健康肠道菌群也与人体免疫系统健康关系密切。
肠道内的一些有益菌群可以刺激免疫系统,增强它的抵抗力。
这些有益菌群可以诱导和维持身体的免疫反应,对病原体的攻击有着很大的帮助。
当肠道内的菌群失衡时,可能会降低免疫系统的强度和能力,使人体更容易受到感染和疾病的侵袭。
有一些研究表明,肠道菌群与许多慢性疾病,如肥胖、炎症性肠病、哮喘和自身免疫疾病等,存在关联。
3. 肠道菌群与心理健康肠道菌群与人体的心理健康有很大的关系。
肠道内的菌群可以影响多种生物学过程,包括轻微的情绪波动和更严重的情绪紊乱等。
例如,有研究表明,肠道内的一些菌群可以产生多巴胺和其他神经递质,这些化合物对情绪和精神健康有重要作用。
许多精神障碍,如抑郁症、焦虑症和自闭症等,都与肠道菌群的失衡有关。
健康的肠道菌群也能够对睡眠和消化系统产生正面的影响。
4. 如何维护肠道菌群的健康为了保持肠道菌群的健康,我们可以通过改变膳食结构和生活方式来实现。
前沿研究⼁肠道菌群是调节神经系统功能紊乱的潜在靶点编者按⼈体胃肠道系统寄居着上万亿的微⽣物,这些微⽣物统称为肠道菌群,在调节宿主免疫和代谢平衡等⽅⾯具有重要作⽤。
通常情况下,肠道菌群失调会带来各种慢性疾病的发⽣,如肥胖、2型糖尿病等。
然⽽,令⼈欣喜的是,近年的相关研究表明,肠道菌群与调节神经系统功能紊乱之间有着密切的关系,那么,肠道菌群是如何影响神经系统的,可通过哪些⽅式调节肠道菌群?饮⾷和营养在塑造肠道菌群中起哪些作⽤?中国⼯程院陈卫院⼠科研团队在中国⼯程院院刊《Engineering》撰⽂,介绍了肠道菌群与⼤脑相互作⽤的肠–脑轴分⼦机制,以及肠道菌群失调引发的神经系统功能紊乱情况。
⽂章指出,调节肠道菌群失衡是⼲预神经系统功能紊乱的潜在策略,基于⽬前对肠-脑轴的认识,分析和评估了以肠道菌群失调为靶点的神经系统疾病⼲预策略,如使⽤益⽣菌、益⽣元、合⽣元以及饮⾷和营养等。
⽬前关于肠道菌群–肠–脑轴⽅⾯的研究尚处在起步阶段,未来仍需深⼊研究阐明肠道菌群调节神经系统功能的分⼦机制,揭⽰神经系统功能紊乱的新型病理机制,为神经系统功能紊乱提供潜在的诊断标志物和⼲预策略,形成针对肠道菌群失调的神经系统疾病的新治疗⽅法。
⼀、引⾔据估算,⼀个体重为70 kg的⼈体内的细菌总量⼤约有3.8×1013个,⽐⼈体内细胞数(⼤约3.0×1013个)还要略多⼀些。
⼈体胃肠道系统寄居着上万亿的微⽣物,这些微⽣物统称为肠道菌群。
其中位于胃肠道系统末端的结肠和直肠具有⼈体内最⾼的菌群密度。
肠道菌群这个复杂的⽣态系统主要由细菌组成,其余则包括病毒、古细菌、原⽣⽣物和酵母。
因此,共⽣的肠道菌群⼀直被认为是宿主的基因和环境相互作⽤的重要界⾯,并且宿主和肠道菌群之间存在着相互联系的共⽣⽣理机制。
近来,越来越多的研究揭⽰肠道菌群在调节宿主⽣理功能⽅⾯发挥着重要作⽤,如维持宿主的免疫和代谢平衡。
⼈从⼀出⽣便获得了肠道菌群,并且在整个⽣命周期中,肠道菌群会经历各种各样的变化(表1)。
∙1Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.AbstractRecent advances in DNA sequencing and mass spectrometry technologies have allowed us to collect more data on microbiome and metabolome to assess the influence of the gut microbiota on human health at a whole-systems level. Major advances in metagenomics and metabolomics technologies have shown that the gut microbiota contributes to host overall health status to a large extent. As such,the gut microbiota is often likened to a measurable and functional organ consisting of prokaryotic cells, which creates the unique gut ecosystem together with the host eukaryotic cells. In this review, we discuss in detail the relationship between gut microbiota and its metabolites like choline, bile acids, phenols, and short-chain fatty acids in the host health and etiopathogenesis of various pathological states such as multiple sclerosis, autism, obesity, diabetes, and chronic kidney disease. By integrating metagenomic and metabolomic information on a systems biology-wide approach, we would be better able to understand this interplay between gut microbiome and host metabolism. Integration of the microbiome,metatranscriptome, and metabolome information will pave the way toward an improved holisticunderstanding of the complex mammalian superorganism. Through the modeling of metabolicinteractions between lifestyle, diet, and microbiota, integrated omics-based understanding ofthe gut ecosystem is the new avenue, providing exciting novel therapeutic approaches for optimal host health.Proc Nutr Soc. 2014 Oct 14:1-6. [Epub ahead of print]Nutritional management of (some) autism: a case for gluten- and casein-free diets?Whiteley P1.Author information∙1ESPA Research,2A Hylton Park,Hylton Park Road,Sunderland SR5 3HD,UK.AbstractAutism spectrum disorders represent a diverse and heterogeneous array of conditions unified by the variable presence of specific behaviours impacting social and communicative functions (social affect) alongside other presentation. Common overt characteristics may come about as a consequence ofseveral different genetic and biological processes differentially manifesting across different people or groups. The concept of plural 'autisms' is evolving, strengthened by an increasingly important evidence base detailing different developmental trajectories across the autismspectrum and the appearance of comorbidity variably interacting with core symptoms and onwards influencing quality of life. Reports that dietary intervention, specifically the removal of foods containing gluten and/or casein from the diet, may impact on the presentation of autism for some, complement this plural view of autism. Evidencesuggestive of differing responses to the use of a gluten- and casein-free diet, defined as best- and non-response, has combined with some progress on determining the underlying genetic and biologicalcorrelates potentially related to such dietary elements. The preliminary suggestion of a possible diet-related autism phenotype is the result. This review will highlight several pertinent aspects onwards to an effect of food in some cases of autism including research on the pharmacological activity of foodmetabolites, immune response, issues with gut barrier function and some contribution fromthe gut microbiota. These represent promising areas in need of far greater research inspection in order to potentially define such a diet-related subgroup on the autism spectrum.∙1Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.AbstractThere is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis.Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that entericmicrobiota plays a role in early programming and laterresponse to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communicationbetween gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging,suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.∙1Centre for Clinical Microbiology, UCL (University College London), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK, g.rook@.AbstractRegulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause thegut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbialbiodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thusthe gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends"mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies,autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease.Moreover poorly regulated inflammation during pregnancy might contribute to brain developmentalabnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation andinflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates themicrobiota, Old Friends and immunoregulation in the control of stress resilience.∙1Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.∙2Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.∙3Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland.∙4Department of Psychiatry, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.∙5Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.Electronic address: j.cryan@ucc.ie.AbstractGut microbiota is essential to human health, playing a major role in the bidirectional communicationbetween the gastrointestinal tract and the central nervous system. The microbiota undergoes a vigorous process of development throughout the lifespan and establishes its symbiotic rapport with the host early in life. Early life perturbations of the developing gut microbiota can impact neurodevelopment andpotentially lead to adverse mental health outcomes later in life. This review compares the parallel early development of the intestinal microbiota and the nervous system. The concept of parallel and interacting microbial-neural critical windows opens new avenues for developing novel microbiota-modulating based therapeutic interventions in early life to combat neurodevelopmental deficits and brain disorders.∙1Institute of Internal Medicine Catholic University of Rome, Italy, Largo A. Gemelli, 8 - 00168 - Roma, Italia. gcammarota@rm.unicatt.it.AbstractHuman beings and gut microbiota are in a symbiotic relationship, and the hypothesis of a "superorganism" composed of the human organism and microbes has been recently proposed.The gut microbiota fulfills important metabolic and immunological tasks, and the impairment of itscomposition might alter homeostasis and lead to the development of microbiota-related diseases. The most common illnesses associated with alterations of thegut microbiota include inflammatory bowel disease, gastroenteric infections, irritable bowel syndrome and other gastrointestinal functional diseases, colorectal cancer, metabolic syndrome and obesity, liver diseases, allergic diseases, and neurological diseases such as autism. In theory, every disease associated with the impairment of intestinal microflora might benefit from the therapeutic modulation of the gut microbiota. A number of attempts to manipulate the microbiota have not produced identical results for every disease. Although antibiotics and probiotics have been available for a long time, the so-called fecal microbiota transplantation, which is a very old remedy, was only recently re-evaluated as a promising therapeutic approach for microbiota impairment. A comprehensive understanding of the gut microbiota composition, in states of both health and various diseases, is needed for the development of future approaches for microbiota modulation and fordeveloping targeted therapies. In this review, we describe the role of the microbiota in several diseases and the related treatment options that are currently available.∙1Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.Electronic address: kellyafoley@.∙2Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada;The Kilee Patchell-Evans Autism Research Group, Departments of Psychology and Psychiatry, Division of Developmental Disabilities, The University of Western Ontario, London, ON N6A 5C2, Canada.Electronic address: dmacfabe@uwo.ca.∙3Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.Electronic address: avaz3@uwo.ca.∙4Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada;The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada. Electronic address: ossenkop@uwo.ca.∙5Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada;The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada. Electronic address: kavalier@uwo.ca.AbstractEmerging evidence suggests that the gut microbiome plays an important role in immune functioning, behavioral regulation and neurodevelopment. Altered microbiome composition, including altered short chain fatty acids, and/or immune system dysfunction, may contribute to neurodevelopmental disorders such as autism spectrum disorders (ASD), with some children with ASD exhibiting bothabnormal gut bacterial metabolite composition and immune system dysfunction. This study describes the effects of prenatal propionic acid (PPA), a short chain fatty acid and metabolic product of many antibiotic resistant enteric bacteria, and of prenatal lipopolysaccharide (LPS), a bacterial mimetic and microbiome component, on social behavior in male and female neonatal, adolescent and adult rats. Pregnant Long-Evans rats were injected once a day with either a low level of PPA (500 mg/kg SC) on gestation days G12-16, LPS (50 μg/kg SC) on G12, or vehicle control on G12 or G12-16. Sex- and age-specific, subtle effects on behavior were observed. Both male and female PPA treated pups were impaired in a test of their nest seeking response, suggesting impairment in olfactory-mediated neonatal social recognition. As well, adolescent males, born to PPA treated dams, approached a novel object more than control animals and showed increased levels of locomotor activity compared to prenatal PPA females. Prenatal LPS produced subtle impairments in social behavior in adult male and female rats. These findings raise the possibility that brief prenatal exposure to elevated levels of microbiome products, such as PPA or LPS, can subtly influence neonatal, adolescent and adult social behavior.∙1Centre for Clinical Microbiology, Department of Infection, University College London (UCL), London, UK. Electronic address: g.rook@.∙2Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.∙3Department of Psychiatry, College of Medicine and Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.AbstractThe immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia andautism. The immune system also acts indirectly by "farming" theintestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparentinflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery,breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.1Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.AbstractThe microbiota colonizes every surface exposed to the external world and in the gut, it plays important roles in physiological functions such as the maturation of the immune system, the degradation of complex food macromolecules and also behaviour. As such, the immune system has developed tools to cohabit with the microbiota, but also to keep it under control. When this control is lost, dysbiosis, i.e. deregulation in bacterial communities, can occur and this can lead to inflammatory disorders, including inflammatory bowel disease, obesity, diabetes and autism. For these reasons, the analysis of the microbiota, itsinteractions with the host and its composition in disease, have been intensively investigated in the last few years. In this review, we summarize the major findings in the interaction of the microbiota with the host immune system.。