42提公因式法1
- 格式:ppt
- 大小:559.00 KB
- 文档页数:20
北师大版八年级数学下册42《提公因式法》优质教案XXX《提公因式法》教案教学目标一、知识与技能让学生了解多项式公因式的意义;初步学会用提公因式法分解因式.二、过程与方法通过找公因式,培养学生的观察能力和类比推理能力.三、情感态度和价值观在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的惯,同时培养学生的合作交流意识.教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来.教学难点:让学生识别多项式的公因式教学过程:一、导入新课1、分解因式的概念:2、整式的乘法与因式分解有什么关系吗?学生回忆回答:把一个多项式化为几个整式乘积的形式,叫做把这个多项式分解因式.分解因式与整式乘法是互逆运算.3、近年来,我国土地沙漠化问题严重,有3队青年志愿者向沙漠宣战,组织了一次植物造林活动.每队都种树37行,其中一队种树102列,二队种树93列,三队种树105列,完成这次植树活动共需要多少棵树苗?学生阐发题意,列出算式:37×102+37×93+37×105提出问题:有没有简便的运算?学生讨论分析,找出简便的方法并计算:共同的因数3737×102+37×93+37×105=37×(102+93+105)=37×300=(棵)想一想:如果m·a+m·b+m·c进行因式分解能用这种方法吗?分析:这个算式也有共同的因数m,所以可用此方法因式分解m·a+m·b+m·c=m (a+b+c)这种方法就是我们这节课要研究的内容-----提公因式法2、新课研究(一)探究提公因式法的界说1、做一做:多项式ma+mb+m有共同的因式m,多项式ab+bc各项都含有不异的因式吗?多项式3x2+x呢?多项式mb2+nb-b呢?测验考试将这几个多项式划分写成几个因式的乘积,并与同伴交换.学生分析讨论,归纳如下:ab+bc:不异的因式是b;ab+bc=b(a+c)3x2+x:相同的因式是x;3x2+x=x(3x+1)mb2+nb-b:不异的因式是b;mb2+nb-b=b(m+n+1)分析:以上多项式的特点是都有共同的因式归纳:多项式中各项都含有的相同因式,叫做这个多项式的公因式.2、议一议:(1)多项式2x2+6x3中各项的公因式是什么?(2)你能尝试将多项式2x2+6x3因式分解吗?与同伴交流.引导学生分析,找出公因式:两项都有系数,系数应是2,是2与6的最大公约数.两项都有含有不异的字母x,x的指数是2与3,应取字母的最低次幂.以是,多项式2x2+6x3中各项的公因式是2x2 据此由学生自主完成第二问的问题:2x2+6x3=2x2(1+2x)以长进行的因式分化,都是应用的提公因式法,你能总结提公因式法的界说吗?学生观察分析,归纳总结:假如一个多项式的各项含有公因式,那末就能够把这个公因式提出来,从而将多项式化成两个因式乘积的方式.这种因式分化的方法叫做提公因式法.引导学生总结出找公因式的普通步骤:首先:找各项系数的最大公约数,如2和6的最大公约数是2;其次:找各项中含有的不异的字母,不异字母的指数取次数最低的.(二)例题解析例1、将下列各式分解因式:(1)3x+6;(2)7x2-x;(3)8a3b2-12ab3c+abc;(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.学生自主完成,解题过程:解:(1)3x +x3=x⋅3+x⋅x2=x(3+x2);(2)7x3-x2=7x2⋅x-7x2⋅3=7x2(x-3)(3)8a3b2-12ab3c+ab=ab⋅8a2b-ab⋅12b2c+ab⋅1=ab(8a2b-12b2c+1);(4)- 24x3+12x2-28x=-(24x3-12x2+28x)=-(4x⋅6x2-4x⋅3x+4x⋅7)=-4x(6x2-3x+7)按照以上的做题进程。
提取公因式应当注意的几个问题提取公因式法是最基本的也是最常用的因式分解方法,对于提取公因式法应当注意以下几个问题:1. 公因式要提尽也就是提取公因式后的多项式的各项不应该再有公因式。
例如:都是没有提尽公因式,因而没有达到因式分解的目的。
2. 小心丢掉“1”当多项式中的某一项恰好是公因式时,提完公因式这一项的位置应该是“1”,而不能把它丢掉。
例如:提取公因式的结果是,而不是。
3. 当多项式第一项系数为负时,要提出“-”号,使提取公因式后的多项式的第一项系数为正但要注意,提出“-”号后,括号内的各项都要变号。
例如:4. 公因式是多项式时,要小心符号对于公因式是多项式或多项式的幂时,要注意几种常见的变形:一般地,n为偶数时,;n为奇数时,。
例如:5. 多项式系数中出现分数的处理一般来说,当提取系数为分数的公因式后,得到的多项式的各项的系数都应该是整数,为了达到这样的目的,有两种处理方法:(1)利用分数的基本性质化成同一分母后再提取公因式。
例如:(2)直接提取各项系数中分子的最大公约数,分母的最小公倍数,作为整个公因式的系数。
如分子8、4的最大公约数是4,分母27、9的最小公倍数是27,故系数提取,于是:6. 提取公因式后,括号中的多项式要注意化简例如:7. 提取公因式分解因式的结果,对于相同因式的积一般写成幂的形成例如:例1. 下列各式因式分解正解的是()A.B.C.D.解:A错,因为提取y后,第二项应为1而不是0。
B错,因为提取后,括号中的第二项、第三项没有变号。
C错,因为公因式没有全部提取尽,应提取,而不是。
对于D。
因为,故分解正确,应选D。
例2. 把下列各式分解因式:(1);(2);(3)解:(1)(2)(3)。
因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1.提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3-2x2-x(2003淮安市中考题)x3-2x2-x=x(x2-2x-1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
@初中生家长例2.分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)23.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n@初中生家长=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4.十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4.分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
@初中生家长例5.分解因式x2+6x-40解x2+6x-40=x2+6x+(9)-(9)-40=(x+3)2-(7)2=[(x+3)+7][(x+3)–7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
4.2 提公因式法(1)●学习目标分析(一)知识与技能1.了解公因式的意义,能准确的确定一个多项式各项的公因式;2.初步会用提公因式法分解因式,进一步理解因式分解与整式乘法的关系.(二)方法与过程经历探索寻找多项式各项的公因式的过程,培养合作探究的意识,积累合作的经验,进一步培养学生认真、严谨的科学态度.(三)情感态度价值观积极参与数学活动,养成独立思考的习惯,提高数学合作交流意识水平,加强学生的直觉思维并渗透化归的思想方法,进一步深化学生逆向思维能力.●教学重点能观察出多项式的公因式,并能利用提公因式法分解因式.●教学难点正确识别多项式各项的公因式.●教学方法独立思考、合作交流探究.●教具准备:多媒体课件●探究活动设计本节教学共设计了两个探究活动:一是探究如何确定公因式;二是探究如何提取公因式分解因式。
探究方法与步骤:1、创设问题情境,引发学生独立思考。
2、学生小组合作交流,共同探究。
3、交流展示讨论结果,归纳总结探究结论。
●教学过程设计:第一环节:温故知新1.因式分解的概念:把一个多项式化为___________的形式, 这种变形叫做把这个多项式因式分解,也叫分解因式。
2.下面由左到右的变形,哪个是分解因式?(1) 5x(2x -1)= 10x 2-5x(2) 10x 2-5x = 5x(2x -1)整式乘法与分解因式之间的关系是什么?【设计意图】 因式分解的概念及整式乘法与分解因式之间的关系两个知识点与本节课的学习紧密相关。
提公因式法分解因式实质上是逆用整式乘法中的单项式乘多项式将一个多项式化为两个整式乘积的形式。
第2题中设计的的两个等式也旨在渗透这一点。
加上课件动态演示互逆变形过程,增强了直观性。
通过分析因式分解与整式乘法之间的互逆过程学习因式分解的方法,以提高学生对知识间联系的认识。
第二环节:创设情境、导入新课近年来,我国土地沙漠化问题严重. 3月12日植树节到来之际,,学校组织了 “我参与、我奉献、我快乐”植树活动,要求每行种树15棵,其中初一年级种树27行,初二年级种树35行,初三年级种树38行,问完成这次植树活动学校共需要多少棵树苗?师:解决这个问题,你能列出怎样的算式?哪种算式计算起来较为简便?生:列式:①15×27+15×35+15×38②15×(27+35+38)15×27+15×35+15×38=15×(27+35+38)=15×100=1500师:这种运算方法的根据是什么?生:根据是乘法对加法的分配律师:为什么能逆用分配律呢?这个式子的各项有什么特点?生:这个式子的各项有相同的因数。
⑴提公因式法各项都含有得公共得因式叫做这个多项式各项得公因式。
如果一个多项式得各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积得形式,这种分解因式得方法叫做提公因式法.具体方法:当各项系数都就是整数时,公因式得系数应取各项系数得最大公约数;字母取各项得相同得字母,而且各字母得指数取次数最低得;取相同得多项式,多项式得次数取最低得。
如果多项式得第一项就是负得,一般要提出“-”号,使括号内得第一项得系数成为正数。
提出“-”号时,多项式得各项都要变号.口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。
例如:-am+bm+cm=-m(a—b-c);a(x-y)+b(y-x)=a(x-y)—b(x—y)=(x-y)(a—b)。
注意:把2a+1/2变成2(a+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式得多项式必须就是三项式,其中有两项能写成两个数(或式)得平方与得形式,另一项就是这两个数(或式)得积得2倍。
立方与公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a—b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)例如:a^2+4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧1、分解因式与整式乘法就是互为逆变形.2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式得结果必须就是以乘积得形式表示;③每个因式必须就是整式,且每个因式得次数都必须低于原来多项式得次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
第四章因式分解4.2 提公因式法⑴【课程标准要求】能用提公因式法、公式法进行因式分解。
【教材分析】本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。
如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系。
根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固。
【学情分析】学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础。
学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验。
【教学目标:】1、知识与技能目标①学会确定多项式中各项的公因式;②会用提公因式法进行公因式是单项式的因式分解。
2、过程与方法目标①通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;②由乘法分配律的逆运算过渡到因式分解,通过找公因式,培养观察能力。
3、情感与态度目标养成独立思考的习惯,同时培养合作交流意识。
初步感到因式分解在简化计算中将会起到很大的作用。
【教学重点:】公因式的概念及运用提公因式法进行因式分解。
【教学难点:】正确找出多项式中各项的公因式。
【教学过程:】一、课前预习:1、熟记整式除法法则,完成下列运算:⑴=÷n m a a ⑵=÷222326n m n m⑶()=÷-ab b a ab 484222 ⑷()()=-÷-+-2343342332b a b a b a b a⑸()()=÷+-x x x x 1010203034 ⑹()()=÷-+xyz xyz z y x z y x 88163232332、阅读教材P95-96,完成下列问题:⑴学习95页的引例,理解什么是公因式,会找一个多项式各项的公因式;⑵完成95页议一议,理解并记住提公因式法的概念;⑶学会例1,完成想一想。
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
因式分解的常用方法 (方法最全最详细 )因式分解的常用方法第一局部:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式, 主 要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:1〕通常采用一“提〞、二“公〞、三“分〞、四“变〞的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或 可利用公式法继续分解;2〕假设上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项〔添项〕等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过假设干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b)=a 2-b 2-----------a2-b 2=(a+b)(a -b);(2) (a ±b)2=a 2±2ab+b 2---------a2±2ab+b 2=(a±b)2;(3) (a+b)(a22 333 322-ab+b)=a+b---------a +b=(a+b)(a-ab+b);(4) (a2 2 )=a3 3 --------a 3 32 2-b)(a+ab+b -b -b =(a-b)(a +ab+b).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3 3 3 2 2 2+b+c -3abc=(a+b+c)(a +b+c -ab-bc-ca);例.a ,b ,c 是ABC 的三边,且a 2b 2c 2abbcca ,那么 ABC 的形状是〔 〕A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解:a2b2c2ab bc ca2a22b22c22ab2bc2ca (ab)2(bc)2(ca)20abc1因式分解的常用方法(方法最全最详细)三、分组分解法.〔一〕分组后能直接提公因式例1、分解因式:amanbmbn分析:从“整体〞看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部〞看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
13.5.1 因式分解-提公因式法【知能点分类训练】知能点1 因式分解的意义1.下列从左到右的变形,属于因式分解的是().A.(x+3)(x-3)=x2-9 B.x2-9+x=(x+3)(x-3)-xC.xy2-x2y=xy(y-x)D.x2+5x+4=x(x+5+)2.下列变形不属于分解因式的是().A.x2-1=(x+1)(x-1)B.x2+x+14=(x+12)2C.2a5-6a2=2a2(a3-3)D.3x2-6x+4=3x(x-2)+43.下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?(1)ad+bd+cd+n=d(a+b+c)+n (2)ay2-2ay+a=a(y-1)2(3)(x-4)(x+4)=x2-16 (4)x2-y2+1=(x+y)(x-y)+1知能点2 提公因式法分解因式4.多项式-7ab+14abx-49aby的公因式是________.5.3x2y3,2x2y,-5x3y2z的公因式是________.6.下列各式用提公因式法分解因式,其中正确的是().A.5a3+4a2-a=a(5a2+4a)B.p(a-b)2+pq(b-a)2=p(a-b)2(1+q)C.-6x2(y-z)3+x(z-y)3=-3x(z-y)2(2x-z+y)D.-x n-x n+1-x n+2=-x n(1-x+x2)7.把多项式a2(x-2)+a(2-x)分解因式等于().A.(x-2)(a2+a)B.(x-2)(a2-a)C.a(x-2)(a-1)D.a(x-2)(a+1)8.下列变形错误的是().A.(y-x)2=(x-y)2B.-a-b=-(a+b)C.(a-b)3=-(b-a)3D.-m+n=-(m+n)9.分解下列因式:(1)6abc-3ac2(2)-a3c+a4b+a3(3)-4a3+16a2-26a (4)x(m-x)(m-y)-m(x-m)(y-m)知能点3 利用因式分解解决问题10.9992+999=__________=_________.11.计算(-2)2007+(-2)2008的结果是().A.2 B.-2 C.2007 D.-112.计算下列各题:(1)2.982-2.98×2.97; (2)7.6×200.7+4.3×200.7-200.7×1.913.先分解因式,再求值:xyz2+xy2z+x2yz,其中x=25,y=720,z=14.【综合应用提高】14.如果3x2-mxy2=3x(x-4y2),那么m的值为________.15.写出下列各项的公因式:(1)6x2+18x+6; (2)-35a(a+b)与42(a+b).16.已知n为正整数,试判断n2+n是奇数还是偶数,说明理由.17.试说明817-279-913能被45整除.13.5.2 因式分解-公式法【知能点分类训练】知能点1 用平方差公式分解因式1.-b2+a2=___________________;9x2-16y2=________________________.2.下列多项式(1)x2+y2;(2)-2a2-4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;(5)(3a)2-4(2b)2中,能用平方差公式分解的有()A.1个B.2个C.3个D.4个3.一个多项式,分解因式后结果是(x3+2)(2-x3),那么这个多项式是().A.x6-4 B.4-x6C.x9-4 D.4-x94.下列因式分解中错误的是()A.a2-1=(a+1)(a-1)B.1-4x2=(1+2x)(1-2x)C.81x2-64y2=(9x+8y)(9x-8y)D.(-2y)2-x2=(-2y+x)(2y+x)5.分解因式:(1)a2-0.01b2(2)25(m+n)2-16(m-n)2(3)49x4-64x2(4)(x+y)2-9y2知能点2 用完全平方公式分解因式6.4a2+______+81=(2a-9)2.7.多项式a2-4b2与a2+4ab+4b2的公因式是().A.a2-4b2B.a+2b C.a-2b D.没有公因式8.下列因式分解中正确的是().A.x4-8x2+16=(x-4)2B.-x2+x-14=-14(2x-1)2C.x(m-n)-y(n-m)=(m-n)(x-y); D.a4-b4=(a2+b2)(a2-b2)9.下列各式:①-x2-xy-y2;②12a2+ab+12b2;③-4ab-a2+4b2;④4x2+9y2-12xy;⑤3x2-6xy+3y2.•其中能用完全平方公式分解因式的有().10.分解下列因式:(1)-x2+12xy-36y2(2)25x2-10x+1(3)-2x7+36x5-162x3(4)(a2+6a)2+18(a2+6a)+81知能点3 利用因式分解解决问题11.计算:2 0072-72=_____________;992+198+1=___________.12.如果ab=2,a+b=3,那么a2+b2=________.13.若a2+2(m-3)a+16是完全平方式,则m的值为().A.-5 B.-1 C.7 D.7或-114.已知a=2275,b=2544,求(a+b)2-(a-b)2的值.15.利用因式分解计算:(1)9×2.32-4×1.32; (2)80×3.52+160×3.5×1.5+80×1.52(3)2222 18161 301181--【综合应用提高】16.分解下列因式:(1)9x2(a-b)+y2(b-a)(2)4a2b2-(a2+b2)2 (3)x4-81 (4)1-x2+6xy-9y2 17.已知x-y=-2,求(x2+y2)2-4xy(x2+y2)+4x2y2的值.【开放探索创新】18.已知a,b,c是△ABC的三条边.(1)判断(a-c)2-b2的值的正负;(2)若a ,b ,c 满足a 2+c 2+2b (b -a -c )=0,判断△ABC 的形状.【中考真题实战】19.(沈阳)分解因式:2x 2-4x+2=________.20.(成都)把a 3+ab 2-2a 2b 分解因式的结果是________.21.(衡阳)分解因式x 3-x ,结果为( ).A .x (x 2-1)B .x (x -1)2C .x (x+1)2D .x (x+1)(x -1)22.(北京)分解因式a 2-4a+4-b 2.13.5 因式分解阶段性复习一、阶段性内容回顾1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的_________进行因式分解的方法叫做公式法.5.a 2-b 2=_______,•即两个数的平方差等于这两个数的________•乘以这两个数的_______.6.a 2±2ab+b 2=________,即两个数的平方和加上(或减去)这两个数的积的2•倍等于这两个数的________.7.分解因式的一般步骤:如果多项式各项有_______,则先把_______提出来,•然后再考虑用________,最后_________.二、阶段性巩固训练1.(福州)分解因式:x 3-4x=_____________.2.(贵阳)分解因式:2x 2-20x+50=____________.3.下列变形属于因式分解的是( ).A .(x+1)(x -1)=x 2-1B .a 2-22112()a a b b b=-+ C .x 2+x+14=(x+12)2 D .3x 2-6x+4=3x 2(x -2x )+4 4.下列多项式加上4x 2后,可以成为完全平方式的是( ).A .a 2+2axB .-a 2+2axC .-2x+1D .x 4+45.①4xy ;②12xy 2;③-2y 2;④4y .其中可以作为多项式-28x 2y+12xy 2-24y 3的因式的是( ).A .④B .②④C .①③D .③④6.用因式分解的方法计算42.72+14.6×42.7+7.32的值为( ).A .5 730B .2 500C .250 000D .100 0007.分解下列多项式:(1)5ax 2-10axy+5ay 2 (2)4x 2-3y (4x -3y )(3)(x 2-1)2+6(1-x 2)+9 (4)1-x 2+6xy -9y 2(5)(a 2-12a )2+(a 2-a )+1168.如果x 2+mxy+9y 2是完全平方式,求代数式m 2+4m+4的值.9.计算(1-22221111)(1)(1)(1)23410--- .10.如果m ,n 满足│m+2│+(n -4)2=0,那么你能将代数式(x 2+y 2)-(mxy+n )•分解因式吗?11.已知a 2+b 2+c 2=20,ab+bc+ac=10,试求出(a+b+c )2的值.12.已知a ,b ,c 为△ABC 的三边,且满足条件a 2-c 2+ab -bc=0,试说明△ABC •为等腰三角形.13.观察下列各式:32-12=4×2,42-22=4×3,52-32=4×4,…(1)猜想(n+2)2-n 2的结果.(2)请验证你的猜想.14.已知a+b=23,ab=12,求a3b+2a2b2+ab3的值.15.(1)如果x2+2x+2y+y2+2=0,求x2007+y2008的值.(2)已知m+n=34,m-n=14,求m2-2mn+3m+3n+n2的值.。
第六章第2节《提取公因式法》【教学背景】“提取公因式法”是“浙江版七年级数学(下)”第六章第二节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链结开拓作用。
提取公因式法是因式分解的基础,也为学习因式分解的其他方法及利用因式分解解整式方程(如一元二次方程)打下结实的基础,从而也为学生的运算能力拓展了道路。
(老教材本小节是分两个课时上的)【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法。
它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练。
例题讲授及练习题的匹配都要由浅入深,形式多样化。
利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形。
(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式。
)能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
⒉.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?列式:3.7×3.8+3.7×6.2 (学生思考后列式)3.7 有简便算法吗?=3.7×(3.8+6.2)3.7 =3.7×10=37(m2)在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律。