力矩分配法
- 格式:doc
- 大小:44.00 KB
- 文档页数:3
§8.1力矩分配法的基本概念力矩分配法是在位移法的基础上发展起来的一种渐近法,它主要应用于分析连续梁和无结点线位移的刚架。
杆端弯矩的正负号规定与位移法相同。
一、名词解释1.转动刚度S ij转动刚度表示杆端对转动的抵抗能力,它在数值上等于使杆端产生单位转角时需要施加的力矩。
远端固定:S AB=4i远端铰支:S AB=3i远端滑移:S AB=i远端自由:S AB=0其中:i=EI/l;2.分配系数μij由转动刚度的定义可知:M AB= S AB•θA=4i AB•θAM AC= S AC•θA=i AC•θAM AD= S AD•θA=3i AD•θA取结点A为隔离体,列ΣM=0,可得:M= S AB•θA+ S AC•θA+ S AD•θAM M∴θ= ──────── = ──S AB + S AC + S AD ΣSΣS表示各杆A端转动刚度之和,把θ反代入,可得:M AB=M• S AB/ΣS M AC=M• S AC/ΣS M AD=M• S AD/ΣS令μAj= S Aj/ΣS 则 M Aj=μAj•MμAj称为分配系数,等于某杆的转动刚度与交于结点的各杆的转动刚度之和的比值;同一结点各杆分配系数之间存在下列关系:ΣμAj=μAB +μAC +μAD = 13.传递系数C AjM AB =4i AB•θA,M BA =2i AB•θAM AC =i AC•θA, M CA = -i AC•θAM AD =3i AD•θA,M DA =0C AB= M BA / M AB =1/2∴远端固定:C=1/2远端滑动:C=-1远端铰支:C=0用下列公式表示传递系数的应用:M BA = C AB• M AB系数C AB称为由A端至B端的传递系数;二、力矩分配的基本概念如下图所示结构,用位移法计算时,此结构有一具未知量Z1,典型方程为:r11•Z1 + R1p = 0r11=3i12 + i13 + 4i14 = S12 + S13 + S14 =ΣSR1P =ΣM1j g =M12g +M13g =M1gR1P代表附加刚臂上反力矩,它等于汇交于结点1的各杆端的固端弯矩的代数和,用M1g表示。
力矩分配法简介力矩分配法是一种常用的工程分析方法,用于计算和分析物体受到的力的分布情况以及力矩的平衡。
根据力矩分配法,物体处于平衡状态时,所有作用于物体上的力矩和为零。
利用这个原理,可以计算物体上各点的力的大小和分布。
基本原理力矩是一个力在距离某一点的作用线上产生的旋转效果。
当物体受到多个力作用时,在平衡状态下,力的合力和力矩的合力都为零。
根据力矩的定义,可以得到如下的力矩分配方程:其中,表示物体上所有力矩的代数和。
力矩分配法的步骤力矩分配法一般包括以下几个步骤:1.给定各个力的大小和作用点位置。
2.计算每个力的力矩。
力的力矩可以通过力乘以力臂得到,力臂是力的作用点到某一参考点的直线距离。
3.将各个力矩代入力矩分配方程,求解未知力的大小和作用点位置。
可以利用代数方程或者力矩图等方法进行计算。
4.验证计算结果,检查力矩的合力是否为零,以验证平衡状态。
5.如果力矩不为零,则需要重新调整力的大小和作用点位置,再次计算和验证。
力矩分配法的应用力矩分配法在工程中有广泛的应用。
以下是一些常见的应用例子:1.结构平衡:力矩分配法可以用于计算结构上各个部分受力的平衡情况,如梁、桁架等结构的受力分析。
2.机械设计:力矩分配法可以用于计算机械装置中各个零件受力的分布情况,如齿轮传动、支撑结构等。
3.车辆平衡:力矩分配法可以应用于汽车、飞机等交通工具的平衡分析,确保车辆的稳定性和安全性。
4.物体悬挂:力矩分配法可以计算物体悬挂时各个支点的受力情况,如吊车、吊车臂等。
总结力矩分配法是一种常用的力学分析方法,通过计算力矩的平衡来推导出物体上各点的力的分布情况。
它在工程中的应用非常广泛,可以用于结构平衡、机械设计、车辆平衡等领域。
使用力矩分配法可以帮助工程师更好地理解和分析各种力的作用情况,从而设计出更加稳定和安全的结构和设备。
第十八章力矩分配法力矩分配法理论基础:位移法;计算对象:杆端弯矩;适用范围:连续梁和无侧移刚架。
一、转动刚度转动刚度表示杆端对转动的抵抗能力。
它在数值上等于使杆端产生单位转角时需要施加的力矩,以SAB表示。
A是施力端(近端),B为远端。
1S AB=4i1S AB=3iS AB= i1S AB=0远端固定远端铰支远端滑动远端自由第一节力矩分配法的基本原理1S AB =4i1S AB =3iS AB = i 1S AB =0远端固定远端铰支远端滑动远端自由转动刚度远端固定,S =4i 远端简支,S =3i 远端定向,S =i 远端自由,S =0S AB 与杆的线刚度i 和远端支承情况有关。
i —杆件的线刚度,lEI i二、传递系数M AB = 4i AB ϕAM BA = 2i AB ϕA21==AB BA ABM M C M AB = 3i AB ϕA 0==ABBA ABM M C M AB = i AB ϕAM BA = -i AB ϕA1-==ABBA ABM M C ϕAlAB远端固定ABϕAϕAAB远端铰支远端滑动M BA = 0远端支承转动刚度传递系数固定S=4i C =1/2简支S=3i C =0定向S=i C = -1自由S=0三、力矩分配法的基本原理杆端弯距:取结点A 作隔离体,由∑M =0,得分配系数CA BDi ABi AC i ADAAB A AB AB S i M ϕϕ==4A AC A AC AC S i M ϕϕ==AAD A AD AD S i M ϕϕ==3}M M ABM ACM ADAAD AC AB S S S M ϕ)(++=∑=++=AAD AC AB A SMS S S M ϕMSSM AADAD ∑=M SS M A ABAB ∑=M S S M AACAC ∑=注:1)分配弯矩是杆端转动时产生的近端弯矩。
2)结点集中力偶顺时针为正。
∑=AAkAkSS μMM Ak Ak μ=分配弯矩A ϕM1321=++=∑A A A Ak μμμμ各杆的远端弯矩M kA 可以利用传递系数求出。
第十七章力矩分配法一、力矩分配法的基本概念力矩分配法是在位移法基础上发展起来的一种数值解法,它不必计算节点位移,也无须求解联立方程,可以直接通过代数运算得到杆端弯矩。
力矩分配法的适用对象:是连续梁和无节点线位移刚架。
内力正负号的规定:同位移法的规定一致。
杆端弯矩使杆端顺时针转向为正,固端剪力使杆端顺时针转向为正。
1、转动刚度(S)定义:杆件固定端转动单位角位移所引起的力矩称为该杆的转动刚度,(转动刚度也可定义为使杆件固定端转动单位角位移所需施加的力矩)。
转动刚度与远端约束及线刚度有关远端固定: S = 4 i远端铰支: S = 3i远端双滑动支座: S = i远端自由: S = 0 (i为线刚度)力矩分配法的基本思路,刚节点B将产生一个转角位移FM固端弯矩():是被约束隔离各杆件在荷载单独作用下引起的杆端弯矩。
FFFF MMMM,,,BBABCBDFM一般地不等于零,称为节点不平衡力矩现放松转动约束,即去掉刚臂,这个状态称为放松状态,节点B将产生角位移,并在各杆端(包括近端和远端)引起杆端弯矩,记作M’,则固端弯矩与位移弯矩的代数和就是最终杆端弯矩2、近端位移弯矩的计算及分配系数AB杆:远端为固定支座,转动刚度SBA = 4iBC杆:远端为铰支座,转动刚度SBC = 3iBD杆:远端为双滑动支座,转动刚度SBD = i 各杆近端(B端)的杆端弯矩表达式:FFF,MMMiMSM4,,,,,,,,BABABABABABAFFF,MMMiMSM3,,,,,,,,CCBBCBCBBCBCFFF,MMMiMSM,,,,,,,,BBDBDBBDBDDD式中:23FlqlFFFM,,M,0M,CBDBAB1612显然,杆的近端位移弯矩为:,,,MS,MS,,MS,,,BABABDBDBCBC由B节点的力矩平衡条件ΣM = 0得:FFFS,,M,S,,M,S,,M,0BABABCBCBDBDM,M,M,0 BABCBD解得未知量θ为:FFFF(,M,M,M)(,,M)BCBCBCB,,, S,S,S,SBABCBDB解得的未知量代回杆近端位移弯矩的表达式,得到将未知量代回杆近端分配弯矩的表达式,得到:SFBA,M,S,,(,,M)BABAB,SBSFBC,M,S,,(,,M)BCBCB,SBSFBD,M,S,,(,,M)BDBDB,SB上式中括号前的系数称为分配系数,记作μ,即:SSSBCBABD,,,,,,BABCBD,S,,SSBBB一个杆件的杆端分配系数等于自身杆端转动刚度除以杆端节点所连各杆的杆端转动刚度之和。
力矩分配法练习题
一、判断题
1-1、力矩分配法是由位移法派生出来的,所以能用位移法计算的结构也一定能用力矩分配法计算。
1-2、已知图示连续梁BC跨的弯矩图,则M AB=C BA M BA=57.85kN.m。
1-3、在图示连续梁中M BA=μBA(-70)= -40kN.m。
1-4、在图示连续梁中结点B的不平衡力矩M B=80 kN.m。
1-5、对单点结点结构,力矩分配法得到的是精确解。
1-6、图示结构可以用无剪力分配法进行计算。
1-7、交于一结点的各杆端的力矩分配系数之和等于1。
1-8、结点不平衡力矩总等于附加刚臂上的约束力矩,可通过结点的力矩平衡条件求
出。
1-9、在力矩分配法中,相邻的结点和不相邻的结点都不能同时放松。
1-10、力矩分配法不需计算结点位移,直接对杆端弯矩进行计算。
二、单项选择题
2-1、等截面直杆的弯矩传递系数C与下列什么因素有关?
A 荷载
B 远端支承
C 材料的性质
D 线刚度I
2-2、传递弯矩M AB是
A 跨中荷载产生的固端弯矩
B A端转动时产生的A端弯矩
C A端转动时产生的B端弯矩
D B端转动时产生的A端弯矩
2-3、已知图示连续梁BC跨的弯矩图,则AB杆A端的弯矩=
A 51.4kN.m
B -51.4kN.m
C 25.7kN.m
D -25.7kN.m 2-4、图示杆件A端的转动刚度SAB=
A 4i
B 3i
C i
D 0
2-5、图示杆件A端的转动刚度SAB=
A 4i
B 3i
C i
D 0
2-6、图示连续梁,欲使A端发生单位转动,需在A端施加的力矩
A M AB=4i
B M AB=3i
C M AB=i
D 3i<M AB<4i
2-7、在题2-6图示梁中,如令i1=0,欲使A端发生单位转动,需在A端施加的力矩
A M AB=4i
B M AB=3i
C M AB=i
D 3i<M AB<4i
2-8、在题2-6图示梁中,如令i1=∞,欲使A端发生单位转动,需在A端施加的力矩
A MAB=4i
B M AB=3i
C M AB=i
D 3i<M AB<4i
2-9、一般说来,结点不平衡力矩总等于
A 交于该结点的各杆端的固断弯矩之和
B 传递弯矩
C 附加刚臂中的约束力矩
D 结点集中力偶荷载 2-10、图示连续梁中结点B的不平衡力矩是
A M1-m/2
B -M1+m/2
C -M1-m/2
D M1+m/2
2-11、图示结构EI为常数,用力矩分配法计算时,分配系数。