字板剪切试验抗剪强度
- 格式:doc
- 大小:29.00 KB
- 文档页数:1
(五)十字板剪切试验(VST)十字板剪切试验于1928年在瑞士奥尔桑(J〃Olsson)首先提出。
在我国于1954年开始使用十字板剪切试验以来,在沿海软土地区被广泛使用。
十字板剪切试验是快速测定饱和软粘土层快剪强度的一种简易而可靠的原位测试方法。
这种方法侧得的抗剪强度值,相当于试验深度处天然土层的不排水抗剪强度,在理论上它相当于三轴不排水剪的总强度,或无侧限抗压强度的一半(ϕ=0)。
由于十字板剪切试验不需采取土样,特别对于难以取样的灵敏性高的粘性土,它可以在现场基本保持天然应力状态下进行扭剪。
长期以来十字板剪切试验被认为是一种较为有效的、可靠的现场测试方法,与钻探取样室内试验相比,土体的扰动较小,而且试验简便。
但在有些情况下已发现十字板剪切试验所测得的抗剪强度在地基不排水稳定分析中偏于不安全,对于不均匀土层,特别是夹有薄层粉细砂或粉土的软粘性土,十字板剪切试验会有较大的误差。
因此将十字板抗剪强度直接用于工程实践中,要考虑到一些影响因素。
1.十字板剪切试验的基本技术要求(1)十字板尺寸:常用的十字板尺寸十字板尺寸表8-33十字板尺寸与国内常用的十字板尺寸不同,见表8-33。
(2)对于钻孔十字板剪切试验,十字板插入孔底以下的深度应大于5倍钻孔径,以保证十字板能在不扰动土中进行剪切试验。
(3)十字板插入土中与开始扭剪的间歇时间应小于5min。
因为插入时产生的超孔隙水压力的消散,会使侧向有效应力增长。
拖斯坦桑(Torstensson(1977))发现间歇时间为1h和7d的,试验所得不排水抗剪强度比间歇时间为5min的,约分别增长9%和19%。
(4)扭剪速率也应很好控制。
剪切速率过慢,由于排水导致强大增长。
剪切速率过快,对饱和软粘性土由于粘滞效应也使强度增长。
一般应控制扭剪速率为1。
~2。
/10s,并以此作为统一的标准速率,以便能在不排水条件下进行剪切试验。
测记每扭转1。
的扭矩,当扭矩出现峰值或稳定值后,要继续测读1min,以便确认峰值或稳定扭矩。
高等土力学22页将十字钢板插入土中,施加扭矩达到最大值T max 时,十字板在土中被扭动(如高土图1-29),通过这个扭矩来计算土的抗剪强度,对于野外试验,板高与外径之比一般为H/D=2。
对于各向同性的土:maxf 3T 6=7πD实际上,现场土常常是各向异性的,对于正常固结土,水平面上的抗剪强度一般大于垂直面上的抗剪强度。
用上述公式计算的τf 一般偏大,常经过修正后使用。
适用于软塑到硬塑状态的粘土,对于饱和软粘土,它测得的抗剪强度相当于不排水抗剪强度c u 。
十字板剪切试验是在钻孔中进行的,其目的是测定饱水软粘土的抗剪强度。
十字板剪切试验工程适用条件:(1)沿海软土分布地区但不会有砂层、砾石、贝壳等成分的软粘土。
(2)会有粉砂夹层者,其测定结果往往偏大。
可以获得的物理力学性质参数 软土的不排水抗剪强度(Cu );计算重塑土不排水抗剪强(Cu`),绘制抗剪强度随试验深度的变化曲线;计算出的灵敏度(S ),估计地基容许承载力[R]及确定软土路堤的临界高度或极限高度和变形模量(E0)。
主要试验目的1.测求饱和粘性土的不排水 抗剪强度和灵敏度; 不排水抗剪强度峰2.估算地基土承载力和单桩 十字板剪 值cu(kPa)和残余值 承载力;3.切试验 c’u(kPa) 3 计算边坡稳定性;4.判断软粘性土的应力历史 。
注意事项:1试验过程中,插入不同深度、十字板插入深度不应小于钻孔或套管直径的3-5倍;孔间距大于0.75-1米。
2、十字板插入土后应停留2-3分钟,太短或太长会使强度减小或增大。
3、剪切速度一般为1°-2°/10秒,过快(粘滞性)过慢(固结)会使强度增加。
一般3-10分钟会出现峰值后应继续剪切1分钟。
4、测出峰值后应快速转动6周,测重塑土的不排水抗剪强度。
5、十字板的规格:板高/板宽=2,刃角60°,面积比=13%-14%(越小越好)。
6、由于圆柱侧面和顶面达到剪切破坏不是同时的,因此强度并不是真正的峰值,是一种平均抗剪强度实验3:十字板剪切试验这是一种原位测试土抗剪强度的方法。
八、十字板剪切试验1. 试验的目的及意义通过十字板剪切试验,了解电测十字板的构造,掌握试验的操作步骤及技术要求,采用实验数据得到原状土和重塑土的不排水抗剪强度u C 和'u C ,并计算地基土的灵敏度t S 。
2. 试验的适用范围十字板剪切试验只适用于测定饱和软粘性土的抗剪强度,对于具有薄层粉砂、粉土夹层的软粘性土定结果往往偏大,而且成果比较分敢;它对于含有砂层、砾石、贝壳、树根及其他未分解有机质的土层是不适用的。
3. 试验的基本原理在钻孔中某深度的软粘土中插入规定形状和尺寸的十字板头,施加扭转力矩,将土体剪切破坏,测定土体抵抗扭损的最大力矩,根据力矩平衡条件,通过换算得到土体不排水抗剪强度Cu 值(假定φ=0)。
十字板头旋转过程中假设在土体中产生—个高度为H(十字板的高度)、直径为D(十字板头的直径)的圆柱状剪损面,如右图;并假定该剪损面的侧面和上、下底面上土的抗剪强度都相等。
在剪损过程中,土体产生的最大抵抗力矩M 由圆柱侧表面的抵抗力矩M1和圆柱上下面的抵抗力矩M2两部分组成。
即M =M1十M2。
其中:式中,uC —— 十字板抗剪强度;D —— 十字板头直径; H —— 十字板头高度。
4.试验仪器及制样工具十字板剪切试验所需仪器设备包括:十字板头、钻杆、贯入系统以及测力与记录等试验仪器。
实习中采用的设备如下:十字板头:矩形,高度为10公分,直径为5公分,高径比为2。
贯入系统:手摇链条式贯入机。
测力装置:电阻应变式扭力传感器(试验前需率定)。
记录仪:与电阻应变式测力装置配套的记录仪(LMC-D310型)。
5.试验步骤第一部分,准备工作:(1)、安装手摇链条式贯入机。
(2)、将电测式扭力传感器安装在钻杆上,将连接导线依次穿入空心钻杆,钻杆排放整齐备用。
(3)、将带有扭力传感器的转杆安装在贯入机架上,然后将十字板头和扭力传感器相连接,穿过贯入机架的定位孔。
第二部分,试验阶段:(1)、将传压板安装于链条和钻杆上的固定销之间,转动贯入手轮将十字板头徐徐压入土中,贯入深度可通过钻杆的数量和贯入机架上的刻度来计算。
浅析十字板剪切试验数据整理及应用摘要:十字板剪切试验在软土地基勘察中应用十分广泛,各个规范中对其数据整理及应用不尽相同,论文根据规范对数据的整理及应用进行了比较分析。
关键词:十字板剪切试验;软土;整理;应用1引言十字板剪切实验是用插入土中的标准十字板探头,以一定速率扭转,量测土破坏时的抵抗力矩,测定土的不排水剪强度和残余抗剪强度。
十字板剪切试验可用于测定饱和软黏性土的不排水抗剪强度和灵敏度。
所测得的抗剪强度值,相当于试验深度处天然土层在原位压力下固结的不排水抗剪强度。
十字板剪切试验不需要采取土样,避免了土样扰动及天然应力状态的改变,是一种有效的现场测定土的不排水强度试验方法。
十字板剪切试验因其构造简单,操作方便,广泛运用于软土地基现场原位测试中。
2数据整理2.1计算公式以开口钢环式十字板剪切试验为例,《工程地质手册》第五版中计算公式如下:C u=K·C(R y-R g)C u—土的不排水抗剪强度(kpa)C—钢环系数(kN/0.01mm)R y—原状土剪损时量表最大读数(0.01mm)R g—轴杆与土摩擦时量表最大读数(0.01mm)K—十字板常数(m-2)《土工试验方法标准》GB/T50123-2019,计算公式:C u=10K·C(R y-R g)C u—土的不排水抗剪强度(kpa)C—钢环系数(N/mm)R y—原状土剪损时量表最大读数(mm)R g—轴杆与土摩擦时量表最大读数(mm)K—十字板常数(cm-2)两者公式基本相同,但是各参数单位不同,计算时应注意单位换算。
2.2强度修正十字板剪切试验所测得的不排水抗剪强度峰值,一般认为是偏高的,土的长期强度只有峰值强度的60%~70%。
因此在工程中,需根据土质条件和当地经验对十字板测定的值作必要的修正,以供设计采用。
图1 修正系数《工程地质手册》第五版推荐了两种强度修正方法,其一为Daccal修正法,即根据图1中塑性指数I p获取修正系数,曲线1适用于液性指数I l>1.1的土,曲线2适用于其他软土。
第四节十字板剪切试验十字板剪切试验是将插入软土中的十字扳头,以一定的速率旋转,在土层中形成圆柱形的破坏面,测出土的抵抗力矩,从而换算其土的抗剪强度。
十字板剪切试验可用于原位测定饱和软粘土(φb=0)的不排水抗剪强度和估算软粘土的灵敏度。
试验深度一般不超过30m。
为测定软粘土不排水抗剪强度随深度的变化,十字板剪切试验的布置,对均质土试验点竖向间距可取1m,对非均质或夹薄层粉细砂的软粘性土,宜先作静力触探,结合土层变化,选择软粘土进行试验。
一、试验仪器和设备目前我国使用的十字板有机械式和电测式两种。
机械十字板每作一次剪切试验要清孔,费工费时,工效较低;电测十字板克服了机械式十字板的缺点,工效高,测试精度较高。
机械式十字板力的传递和计量均依靠机械的能力,需配备钻孔设备,成孔后下放十字板进行试验。
电测式十字板是用传感器将土抗剪破坏时力矩大小转变成电信号,并用仪器量测出来,常用的为轻便式十字板、静力触探两用,不用钻孔设备。
试验时直接将十字板头以静力压入土层中,测试完后,再将十字板压入下一层上继续试验,实现连续贯入,可比机械式十字板测试效率提高5倍以上。
见图4﹣12。
试验仪器主要由下列四部分组成: 1.测力装置。
开口钢环式测力装置。
2.十字板头。
国内外多采用矩形十字板头,径高比为1:2的标准型。
板厚宜为2~3mm。
常用的规格有50mm×100mm和75mm×l50mm两种。
前者适用于稍硬粘性土。
图4﹣13为十字板头。
3.轴杆。
一般使用的轴杆直径为20mm。
4.设备。
设备主要有钻机、秒表及百分表等。
二、试验要求及试验要点(一)试验的—般要求为:1.钻孔要求平直,不弯曲,应配用Φ33mm和Φ42mm专用十字板试验探杆。
2.钻孔要求垂直。
3.钢环最大允许力矩80kN·m。
4.钢环半年率定一次或每项工程进行前率定。
率定时应逐级加荷和卸荷,测记相应的钢环变形。
至少重复3次,以3次量表读数的平均值(差值不超过0.005 mm)。
十字板剪切试验推演黄骅港软土抗剪强度指标张宏明;高宗旗;孙成科【摘要】十字板剪切试验是软土层现场试验的主要方法之一,国内外学者认为软土层各向异性,十字板剪切试验过程中软土层剪切破坏为不排水剪切,软土破坏的抗剪强度主要由剪切过程中十字板头形成圆柱体的垂直向和水平向抗剪强度之和.主要本文在前人研究的基础上,分析黄骅港软土形成的独特性,通过现场十字板剪切试验结果,分析整理并进行推演得出软土层不排水抗剪强度指标,结果为今后工程稳定性研究提供可借鉴的方法.【期刊名称】《港工技术》【年(卷),期】2018(055)0z1【总页数】3页(P162-164)【关键词】十字板剪切试验;抗剪强度指标;软土【作者】张宏明;高宗旗;孙成科【作者单位】中交第一航务工程勘察设计院有限公司,天津 300222;中交第一航务工程勘察设计院有限公司,天津 300222;中交第一航务工程勘察设计院有限公司,天津 300222【正文语种】中文【中图分类】TU447黄骅港位于河北省沧州市以东约90 km的渤海之滨,是河北省南部沿海的地区性重要港口,该区属于第四纪滨海相沉积区,地势较平缓,其附近无滑坡、泥石流、岩溶塌陷、地裂等不良地质作用和地质灾害发生的条件。
表层土质以淤泥质土为主,是该地区工程建设中稳定性分析、地基处理、结构计算中的特殊性岩土。
淤泥质土等软土在稳定性分析中经常采用的强度指标主要有:现场十字板剪切指标、室内快剪强度指标和固结快剪指标等。
现场十字板剪切试验属原位测试试验,对软土层的扰动极小,试验结果接近土层实际情况;室内直剪快剪试验因采取土样及运输等过程中对土样具有不同程度扰动作用,试验结果小于天然状态下土层的抗剪强度指标,而且固结排水试验因土样在垂直压力作用下充分排水固结,其强度指标较强度指标偏大。
国内外学者对现场原位十字板剪切试验不排水抗剪强度Cu推演得出淤泥质土等软土地层的抗剪强度指标c、φ值均进行了研究。
袁浩清通过天津新河船厂、塘沽8号码头等3个区段研究[1],得出两者呈线性关系,并认为十字板剪切试验类似于室内固结快剪试验,以Cu~H曲线可推求土的抗剪强度指标c、φ值,即:候晋芳、闫澍旺[2-3]和赵佩胜[4]研究得出,十字板剪切试验破坏圆柱体上下面和侧面的抗剪强度均满足摩尔-库伦强度准则,且两者产生的抗扭矩力矩之和等于剪切过程中施加的扭矩M。
十字板剪切试验十字板剪切试验(VST)是用插入士中的标准十字板探头,以一定速率扭转,量测土破坏时的抵抗力矩,测定土的不排水剪的抗剪强度和残余抗剪强度。
十字板剪切试验可用于测定饱和软黏性土(φ≈0)的不排水抗剪强度和灵敏度。
所测得的抗剪强度值,相当于试验深度处天然土层在原位压力下固结的不排水抗剪强度。
十字板剪切试验不需要采取土样,避免了土样扰动及天然应力状态的改变,是一种有效的现场测定士的不排水强度试验方法。
一、十字板剪切试验的设备1、十字板剪切试验设备由十字板头、试验用探杆、贯人主机、测力计与记录仪等组成,一般分为以下两种形式:(1)机械式:开口钢环式十字板剪切仪,按轴杆与十字板头的连接方式有离合式和牙嵌式两种。
国内广泛采用离合式,离合式连接方式是利用一离合器装置,使轴杆与十字板头能够离合,以便分别作十字板总剪力试验和轴杆摩擦校正试验。
开口钢环测力装置 十字板头(2)电测式:电阻应变式十字板剪切仪,其十字板头可通过扭力传感器与探杆相连接。
扭力柱的上下端分别与十字板头和轴杆相连接。
扭力柱的外套筒主要用以保护传感器,它的上端丝扣与扭力柱接头用环氧树脂固定,下端呈自由状态,并用润滑防水剂保持它与扭力柱的良好接触。
这样,应用这种装置就可以通过电阻应变传感器直接测读十字板头所受的扭力,而不受轴杆摩擦、钻杆弯曲及坍孔等因素的影响,提高了测试精度。
电测式-十字板头结构示意图1—十字板;2—扭力柱;3—应变片;4—套筒;5—出线孔;2、十字板头的规格十字板头宜采用不锈钢整体制造,且板面粗糙度不大于6.3µm。
对于不同土类应选用不同尺寸的十字板头,在浅部软弱的淤泥、淤泥质黏性士、软黏士中一般选择75mm×150mm的十字板头较为合适,在稍硬士中可用50mm×100mm的十字板头。
十字板头规格表3、贯入主机机械式十字板剪切试验应使用钻机或其他成孔机械预先成孔;电测式十字板采用静力触探贯人主机将十字板头压人指定深度。
(五)十字板剪切试验(VST)十字板剪切试验于1928年在瑞士奥尔桑(J〃Olsson)首先提出。
在我国于1954年开始使用十字板剪切试验以来,在沿海软土地区被广泛使用。
十字板剪切试验是快速测定饱和软粘土层快剪强度的一种简易而可靠的原位测试方法。
这种方法侧得的抗剪强度值,相当于试验深度处天然土层的不排水抗剪强度,在理论上它相当于三轴不排水剪的总强度,或无侧限抗压强度的一半(ϕ=0)。
由于十字板剪切试验不需采取土样,特别对于难以取样的灵敏性高的粘性土,它可以在现场基本保持天然应力状态下进行扭剪。
长期以来十字板剪切试验被认为是一种较为有效的、可靠的现场测试方法,与钻探取样室内试验相比,土体的扰动较小,而且试验简便。
但在有些情况下已发现十字板剪切试验所测得的抗剪强度在地基不排水稳定分析中偏于不安全,对于不均匀土层,特别是夹有薄层粉细砂或粉土的软粘性土,十字板剪切试验会有较大的误差。
因此将十字板抗剪强度直接用于工程实践中,要考虑到一些影响因素。
1.十字板剪切试验的基本技术要求(1)十字板尺寸:常用的十字板尺寸十字板尺寸表8-33为矩形,高径比(H/D为2)。
国外使用的Array十字板尺寸与国内常用的十字板尺寸不同,见表8-33。
(2)对于钻孔十字板剪切试验,十字板插入孔底以下的深度应大于5倍钻孔径,以保证十字板能在不扰动土中进行剪切试验。
(3)十字板插入土中与开始扭剪的间歇时间应小于5min。
因为插入时产生的超孔隙水压力的消散,会使侧向有效应力增长。
拖斯坦桑(Torstensson(1977))发现间歇时间为1h和7d的,试验所得不排水抗剪强度比间歇时间为5min的,约分别增长9%和19%。
(4)扭剪速率也应很好控制。
剪切速率过慢,由于排水导致强大增长。
剪切速率过快,对饱和软粘性土由于粘滞效应也使强度增长。
一般应控制扭剪速率为1。
~2。
/10s,并以此作为统一的标准速率,以便能在不排水条件下进行剪切试验。
十字板剪切试验1、1试验得目得及意义(1)测定原应力条件下软粘性土得不排水抗剪强度;(2)评定软粘性土得灵敏度;(3)计算地基得承载力;(4)判断软粘性土得固结历史。
1、2试验得适用范围原位测定饱水软粘土得抗剪强度,所测得得抗剪强度值,相当于试验深度处于天然土层,在原位压力下固结得不排水抗剪强度。
1、3试验得仪器设备本次实验采用得就是机械式十字板剪切仪(1)十字板头:矩形,高度为10公分,直径为5公分。
(2)轴杆:使用得轴杆直径为20mm,轴杆与十字板头连接得采用离合器装置,使轴杆与十字板头能够离合,以便分别作十字板总剪应力试验与轴杆摩擦校正试验。
(3)测力装置:采用开口钢环测力装置。
1、4实验原理十字板剪切试验得原理,即在钻孔某深度得软粘土中插入规定形状与尺寸得十字板头,施加扭转力矩,将土体剪切破坏,测定土体抵抗扭损得最大力矩,通过换算得到土体不排水抗剪强度值(假定)。
十字板头旋转过程中假定在土体产生一个高度为(十字板头得高度)、直径为(十字板头得直径)得圆柱状剪损面,并假定该剪损面得侧面与上、下底面上每一点土得抗剪强度都相等。
在剪损过程中土体产生得最大抵抗力矩由圆柱侧表面得抵抗力矩与圆柱上、下底面得抵抗力矩两部分组成,即.其中:式中对于普通十字板仪,上式中得值应等于试验测得得总力矩减去轴杆与土体间得摩擦力矩与仪器机械摩阻力矩,即式中杆脱离进行测定;与轴试验时通过使十字板仪力和仪器机械阻力,在—轴杆与土体间的摩擦—f代入得:上式右端第一个因子,对一定规格(与均为十字板几何尺寸)得十字板仪为一常数,称为十字板常数即则有即为十字板剪切试验换算土得抗剪强度得计算公式。
1、5执行技术标准根据《岩土工程勘察规范》(GB50021—2009),十字板剪切试验应满足以下主要技术要求:(1)钻孔十字板剪切试验时,十字板头插入孔底以下得深度不应小于3—5倍钻孔直径,以保证十字板头能在未扰动土中进行剪切试验.(2)十字板头插入土中试验深度后,应至少静止2-3分钟,方可开始剪切试验。