第三章、土壤生物及土壤有机质
- 格式:doc
- 大小:1.15 MB
- 文档页数:14
《土壤学》课程教学大纲(Soil Science)一. 基本信息课程编号:C6U2118课程类别:专业基础课适用层次:本科适用专业:环境科学专业开课学期:第五学期总学分:2.0总学时:32学时考核方式:考试二. 课程教育目标通过本课程的学习,学生掌握应以下基本知识:1. 掌握上壤学的基本概念:决左肥力的物质基础的组成和性质:2. 上壤固相部分的基本性质;3. 上壤肥力因素的存在状况及调控措施;4. 掌握建立和形成土壤学科的物理,化学原理。
5. 运用上壤学的基本理论知识,掌握上壤资源的野外调查技术,合理开发、利用和改良上壤资源的方法和措施,并能应用所学知识解决农业生产和生态环境中产生的有关上壤环境问题。
三. 教学内容与要求第一章:绪论教学内容:介绍上壤在农业生产和生态系统中的重要性、上壤和上壤肥力的槪念、上壤在人类农业和自然环境中的重要性、土壤学的分支学科及主要研究内容,土壤学的研究方法。
基本要求:1. 使学生了解上壤在农业生产及丄地生态系统中的地位和作用:2. 理解上壤作为自然资源的特点及保护上壤的重大意义:3. 掌握上壤和上壤肥力的槪念及正确认识土壊的几个基本观点:4. 了解上壤科学发展的历史和动态,明确丄壤学在我国农业现代化中的任务。
重点:土壤和土壤肥力的槪念。
难点:土壤肥力的生态学意义。
第二章:岩石矿物的风化与土壤母质的形成教学内容:上壤矿物质的矿物学组成,次生矿物的种类、构造、特性以及其对上壤形成的特殊意义和作用,土壤矿物质的化学组成。
基本要求:1. 理解上壤的矿物学组成、化学组成和上壤质地对上壤物理,化学性质和上壤肥力的影响。
2. 掌握髙岭石、蒙脱石,伊利石三大类粘粒矿物的晶层构造特点和性质。
3. 了解粘土矿物形成的理论及粘土矿物的分布规律,重点:上壤矿物质的主要元素组成和硅铝铁率。
难点:三大类粘粒矿物的晶体构造特点。
第三章:土壤有机质教学内容:上壤有机质的来源及其组成、土壤有机质的矿质化作用.上壤有机质的腐殖化作用.影响土壤有机质分解转化的因素、土壤有机物质的性质。
土壤学与土地资源知识点复习绪论、第一章地学基础一、名词解释土壤;土壤肥力;土壤肥力的生态相对性二、简答题1.矿物、岩石的类型(按成因)2.具有鉴别意义的矿物物理性质有哪些?第二章复习思考题一、名词解释物理风化/化学风化/生物风化;同晶代换;土壤剖面二、简答题1.风化作用的类型2.常见矿物抵抗风化的相对稳定性顺序3.风化产物的母质类型4.土壤的剖面形态特征5.自然/耕作土壤剖面层次*影响土壤形成的因素有哪些?它们是如何影响土壤形成的?第三章土壤生物与土壤有机质一、名词解释土壤有机质/腐殖质;矿质化过程/腐殖化过程;氨化作用/硝化作用/反硝化作用二、简答题1.土壤微生物类群及其作用2.土壤腐殖质的性质3.林木根系对土壤的影响*论述土壤有机质在肥力上的重要作用并详细说明第四章土壤物理性质一、名词解释土壤机械组成;土粒密度/土壤密度(容重);土壤孔隙度;物理性粘粒/物理性砂粒二、简答题1.土壤质地对土壤肥力性状的影响2.土壤结构形成的因素3.土壤密度的用途4.适合植物生长的孔隙状况第五章土壤水、空气与热量一、名词解释凋萎系数/田间持水量;土水势;土壤水分特征曲线;土壤热容量二、简答题1.土壤含水量有哪几种表示方法?2.土水势包括哪些分势?3.土壤水分常数有哪些?4.土壤水分输入输出的主要途径5.土壤空气的组成及其与大气进行交换的机制6.土壤热量的来源第六章土壤胶体一、名词解释土壤胶体;阳离子交换量;盐基饱和度二、简答题1.土壤胶体的组成和来源2.土壤胶体的双电层构造3.土壤胶体的性质4.影响阳离子交换量的因素5.影响阳离子有效性的因素*离子交换在园林土壤肥力上的意义第七章土壤酸碱性、缓冲性一、名词解释土壤活性酸度/土壤潜性酸;土壤缓冲性二、简答题1.土壤酸碱性对养分有效性的影响2.土壤酸碱性的调节3.土壤具有缓冲性的原因及影响因素第八章土壤养分与园林土壤肥料一、名词解释土壤养分;肥料二、简答题1.土壤养分的来源及消耗2.大量元素(N/P/K)在土壤中的存在形态及其植物吸收形态3.土壤养分迁移到根表面的途径有哪些?4.施肥原则及方式*氮素/磷素的循环(主要过程及条件)第九章土地资源利用与管理土壤质量、土壤分类、诊断层的概念土壤经度地带性/纬度地带性/垂直地带性的概念各章重点和复习范围第一章、绪论需要掌握的基本概念:土壤,土地,土壤肥力,肥料。
土壤学复习重点第一章绪论1、土壤的物质组成 : 土壤由矿物质、有机质 ( 土壤固相 ) 、土壤水分 ( 土壤液相 ) 、和土壤空气 ( 土壤气相 ) 三相四类物质组成。
2、土壤肥力 : 指土壤在某种程度上能同时不断地供给和调节植物正常生长发育所需要的水分、养分、空气、热量的能力。
3、土壤生产力 : 土壤生长植物并提供产品的能力, 由土壤本身的肥力属性和发挥肥力作用的外界条件所决定。
4、成土因素 : 气候、生物、地形、母质和时间。
第二章土壤的矿物组成1、矿物 : 矿物是天然产生与地壳中具有一定化学组成、物理性质和内在结构的化合物或单质。
土壤矿物按矿物来源, 可分为原生矿物和次生矿物; 按矿物的结晶状态 , 可分为结晶质和非晶质。
2、岩石 : 岩石是指由一种或数种矿物组成的自然集合体。
3、风化作用 : 风化作用是指地壳最表层的岩石在空气、水、温度和生物活动的影响下 , 发生机械破碎和化学变化的过程。
包括物理风化、化学风化、生物风化三种类型。
4、物理风化 : 指岩石因受物理因素作用而逐渐崩解破碎的过程。
特点: 只能引起岩石形状大小的改变 , 而不改变其矿物组成和化学成分。
5、化学风化 : 指岩石在化学因素作用下, 其组成矿物的化学成分发生分解和改变 , 直至形成在地表环境中稳定的新矿物。
特点: 不仅使已破碎的岩石进一步变细,更重要的是岩石发生矿物组成和化学成分的改变, 产生新的物质。
6、生物风化 : 指动物、植物、微生物的生命活动及其分解产物对岩石矿物的风化作用。
7、构成层状硅酸盐粘土矿物的基本结构单位是硅氧四面体和铝氧八面体。
8、同晶替代 : 是指组成矿物的中心离子被电性相同、大小相近的离子替代而晶格构造保持不变的现象。
9、高岭组 :1:1型粘土矿物,晶层由一层硅片和一层铝片重叠而成。
两个晶层的层面间产生了键能很强的氢键 , 不易膨胀。
基层内没有或极少同晶替代现象 , 其电荷数量少。
颗粒较粗、总表面积相对较小 , 可塑性、粘结性、粘着性和吸湿性都较弱。
土壤学复习重点绪论土壤和土壤肥力的概念土壤的基本物质组成思考:为什么说土壤是不可再生的资源第一章地质学基础矿物的定义及分类几种常见造岩矿物的主要特征如正长石和斜长石的主要区别表1-1 摩氏硬度表选择题岩石及三大类岩石的名称三大类岩石的主要结构和构造岩浆岩按照SiO2的含量的分类及代表性岩石的特点几种主要沉积岩的特征矿物组成几种主要变质岩特征第二章岩石风化和土壤形成风化的定义及类型及联系.风化产物的生态类型和地球化学类型土壤形成的大小循环学说及二者关系土壤形成的五大因素第三章土壤生物土壤生物都有哪些及适应的土壤酸碱性特点第四章土壤有机质土壤有机质的定义及组成土壤有机质的转化包括定义和简单的过程了解以及二者之间的关系土壤有机质肥力的作用腐殖质的特点富里酸、胡敏酸与腐殖质的品质关系第五章土壤质地、结构和孔性土壤基本粒级组成、土壤质地的含义不同质地土壤的肥力特征常见结构体名称团粒结构的肥力意义土壤孔隙度、土壤容重、比重的含义土壤密度的应用计算土壤孔性的影响因素和调节第六章土壤水土壤水的类型及其有效性土壤水的有效性及范围田间持水量定义土壤水分含量计算第七章土壤空气和热量土壤空气与大气组成的差异土壤热量的来源主要是太阳辐射土壤热容量和导热率的定义、土壤中各组分热容量和导热率的大小排列第八章土壤胶体和土壤离子交换同晶异质代换作用、可变电荷、永久电荷土壤胶体的类型2:1和1:1型黏土矿物特点从阳离子交换量方面和保肥性方面区别应用:南北方土壤中黏土矿物类型的差别土壤阳离子交换作用、阳离子交换量的定义土壤阳离子交换作用的特点土壤阳离子交换量的影响因素盐基饱和度的定义不同阳离子交换能力大小及对陪补离子的有效性大小顺序第九章土壤酸碱性及缓冲性土壤酸性的产生原因及调节活性酸和潜性酸的含义交换性和水解性酸的大小比较土壤碱性产生原因及调节土壤缓冲性的含义及产生原因第十一章土壤养分土壤养分包括元素氮、磷、钾元素的形态和有效性第十二章土壤与林木营养诊断营养诊断的几种方法第十三章肥料与林木施肥肥料的含义肥料的分类硝态氮肥与铵态氮肥的异同点生理中性、酸性、碱性肥的区分林木施肥的原理和原则第十四章土壤退化与土壤质量土壤退化的含义几种主要土壤退化的类型了解第十五章土壤污染与防治土壤污染的含义土壤污染物及来源了解土壤污染的防治方法了解。
绪论1. 名词解释:土壤,土壤圈,土壤肥力,环境土壤学2. 简述土壤在农业和自然环境中的重要性3. 简述土壤在环境中的作用与地位4. 简述环境土壤学的产生第一章土壤的基本组成、性质和分类第一节土壤生态系统的基本组成土壤生态系统的组成(英文)一、土壤矿物质1.名词解释:原生矿物、次生矿物、粘土矿物、同晶替代2.简述土壤矿物质的元素组成特征。
3.简述层状硅酸盐粘土矿物的构造特征。
4.层状硅酸盐粘土矿物分为那些类组?分别简述其一般特性。
二、土壤有机质1. 名词解释:土壤有机质,土壤腐殖质2. 简述土壤有机质的来源、含量及其主要组成。
3. 简述土壤有机质分解和转化的影响因素。
4. 论述土壤有机质在生态环境上的作用。
三、土壤生物1. 试论述土壤生物的多样性(类型组成)。
2. 简述土壤微生物的根际效应四、土壤水1. 简述土壤水的重要性。
2. 简述土壤水的物理形态、划分依据及其有效性。
3. 什么是土壤水吸力和土水势?土水势包括那些分势?4. 简述土壤水分含量的表示方法及容重的测定方法。
5. 简要说明土壤有效水的范围及其影响因素。
五、土壤空气1. 简述土壤空气的组成及其与近地表大气的差别?2. 简述土壤空气的运动方式及其影响因素。
第二节土壤性质一、土壤物理性质1. 名词解释:土壤密度,土壤容重,土壤孔隙度,当量粒径,土壤质地,土壤机械组成,土壤结构,土壤粘结性,土壤粘着性2. 简述土壤各粒级的理化性质。
3. 简述土壤孔度及其测定方法。
4. 简述土壤水分特征曲线及其影响因素。
5. 试论述不同质地土壤的肥力特点。
6. 简述土壤耕性及其影响因素。
二、土壤化学性质名词解释:土壤胶体、土壤pH、土壤酸度、土壤碱度1.简述土壤胶体种类及其特性。
2.简述土壤吸附性及其类型。
3.土壤中H+离子来源有哪些?简述土壤酸的类型及其相互关系。
4.土壤酸度的指标有哪些?简述影响土壤酸度的因素。
5.论述土壤酸碱性的环境意义。
6.简述土壤氧化还原反应的主要作用及其影响因素。
第三章、土壤生物及土壤有機質第一節、土壤生物與土壤的關係一、土壤生物的種類1.大型生物土壤中大型生物如:齧齒類及食蟲動物、昆蟲類、木蝨、蟎、蝸蝓、蝸牛、蜘蛛、百足蟲、蚯蚓、千足蟲等。
土壤中大型生物的活動對土壤的影響包括:(1)齧齒類常搗碎土塊,變成團粒狀,且搬運土塊。
進而使土壤中有機質團結,且促進空氣流通及排水良好,但其害處在傷害農作物。
(2)昆蟲類能搬運或消化土壤,常把地面植物及動物遺體物質帶入土中,對土壤有機質的移動與破壞有很大的影響,其作穴對土壤通氣亦有影響。
此類動物繁殖力大,其遺體對土壤有機物生成頗有影響。
(3)蚯蚓及蝸牛為土壤中最重要的腹足動物,常以腐朽植物體為食物。
蚯蚓常吃食土壤而再排泄出來,據估計每年每英畝有15噸之乾土穿過蚯蚓之體。
土壤之穿過其體不僅是可作其食物之有機質部份,且有礦物成分,均受其體內消化酵素之作用,又能弄碎土粒,使有機質、氮素、交換性鈣及鎂、有效磷、p H、鹽基飽和度及陽離子交換能量,均有顯著增加,故可增進土壤肥力。
土壤中的無機元素對動物的分布和數量亦有一定影響。
由於石灰質土壤對蝸牛殼的形成很重要,所以在石灰質地區的蝸牛數量往往比其它地區多。
2.土壤微生物(1)線蟲:分為雜食性、肉食性、寄生類等。
(2)原生動物:即單細胞動物,土壤中常見者有三種,變形蟲、纖毛蟲、鞭毛蟲等。
原生動物之主要食物為有機物,故對有機物的分解頗有影響。
而有一部份原生動物以細菌為食物,對於限制細菌之繁殖頗有影響。
3.土壤植物土壤植物可分為:土壤藻類、土壤蕈類、土壤放射菌類、土壤細菌等四類。
(1)土壤藻類可分為:綠藻、藍綠藻、黃綠藻、細藻等。
藻類對土壤性質及植物生長可能的影響如下:∙增加土壤有機質,因其能行光合作用製造有機質。
∙增進土壤通氣,因其行光合作用能放出氧氣。
∙已知有固氮能力之細菌和藻類(如藍綠藻)很多,稱為「固氮生物」,能吸收氮氣,進行固碳作用(nitrogen fixation)。
∙能助長細菌及蕈類之分解有機質及合成有機質。
(2)土壤蕈類可分為:黴菌、蕈菌、酵母菌等。
∙黴菌:為土壤菌類中最重要者,對酸鹼適應力甚強,由喜酸性環境,在強酸的土壤環境甚中為依靠其對有機質的分解。
∙蕈類:廣見於森林土壤中,對有機質亦有分解功能。
∙酵母菌:腐植質中較多,對有機質的分解能力較弱。
(2)土壤細菌類:可分為自營性細菌(autotrophic bacteria)與異營性細菌(heterotrophic bacteria)兩種。
∙自營性細菌:係利用無機鹽類的氧化作用攝取所需能量。
∙異營性細菌:係以有機質為其營養料,有可分為好氣性(Aerobic)與嫌氣性(Anaerobic)兩種,前者分解速率較後者快約10倍;後者對Fe+3的還原成Fe+2(以奪取氧化鐵中的氧氣,並產生土壤斑紋顏色的變化),扮演著重要的角色。
(3)土壤放射菌類:其在土壤中最大的作用為分解有機質,適於鹼性環境中繁殖,酸性環境中作用力較差,此外放射菌具有強力的分解有機物能力。
二、土壤微生物對土壤及高等植物的影響1.有機質之分解與降解作用降解作用主要是將大分子量的有機質,特別是腐植質,分化成較小分子量的有機質,有利於後續的分解作用的進行。
有機質經分解後,其中之N, P, S, K, Ca, Mg等植物營養元素都釋放出來成為無機態,可供植物利用。
(1)好氣性(或稱喜氣性)微生物分解有機物過程:作用於土壤表層或排水良好時,氧氣提供充分,土中微生物對有機質分解速度甚快。
其分解速率約為嫌氣性環境的十數倍(圖3-1)。
(2)嫌氣性(或稱厭氣性)微生物分解有機物過程:作用於土壤底層或排水不良,造成缺氧時,嫌氣性微生物的作用仍須消耗土壤中的氧氣,使氧化還原電位降低,將土壤層塑造成還原環境,使土層的有機質發生還原分解,釋放出氧氣供給微生物分解所需(圖3-2)。
2.微生物之合成作用土壤中許多有機化合物,經微生物吸收分解後,在與微生物體內組織合成新的有機質,合成的有機質即成為腐植質的一部份。
此項作用對腐植質的形成關係至為重要。
(郭魁士,1997:115-116)3.固氮作用、硝化作用與脫氮作用土壤中有一部份微生物,如異營性的固氮細菌等,能吸收空氣中之游離氮氣,透過化學能轉化成自由氮原子(N2→2N),稱為「固氮作用」。
自由氮與氫氣合成氨氣(2N+3H2→2NH3)或胺類有機質(有機質─NH2),稱為「胺化作用」,兩個過程合併是廣義的「固氮作用」。
含氮有機質分解過程又轉化成無機含氮化合物(如尿素和尿酸),這個過程是一種放熱反應,對土壤生物及作物均有益處。
(參:孫儒泳主編,1995:302)「硝化作用」(nitrification)係指「由氨氧或胺類轉化成硝酸的作用」(第一步亞硝酸鹽化:NH4+→NO2-;第二步硝酸鹽化:NO2+→NO3-),硝化細菌為嚴格的好氣性細菌,故盛行於排水與通氣良好的土壤。
硝酸在土壤中如遇鹽基離子(鹼金族及鹼土族離子),即形成硝酸鹽。
硝酸或硝酸鹽中之氮,特稱為硝酸態氮(Nitrate nitrogen,NO3-N),能供作物吸收,故亦屬於「有效性氮」。
「脫氮作用」(或稱「反硝化作用」)為與硝化作用相反的微生物(細菌及真菌)轉變作用,把硝酸化合物還原成為NO2、N2O、NO等氣體而揮發出去。
由於脫氮作用是無氧或缺氧條件下進行,這一過程通常是透過較差的土壤中進行的,故容易在排水不良或浸水的底土層中進行。
(參:郭魁士,1997:116-121;孫儒泳主編,1995:303-304)4.S、Mn、Fe等之氧化、還原作用排水良好的土壤環境,Fe、Mn與S透過自營性細菌之氧化作用,攝取所需的能量以維生活。
硫磺細菌產生硫酸,能促進土壤中許多礦物發生分解與溶解而形成硫酸鹽,植物要吸收之硫即為SO4-2,故此作用為對植物營養有利之作用。
但當土壤中所含的硫化鐵礦過多時,硫化鐵礦物被硫磺細菌氧化,會產生過多的硫酸,使土壤p H大幅降低,對作物生長不利。
反之,排水不良的土壤環境,S、Mn與Fe受嫌氣性細菌作用均易發生還原作用。
植物所吸收的鐵,主要為溶解性較大的Fe+2,故鐵之還原對植物營養有益,但溶解性Fe+2過多時(通常發生在土壤長期浸水時),則對植物生長有害。
有機質在排水不良與空氣閉塞情況下,受嫌氣性微生物分解,產生一些對植物生長有害的物質,如CH4, H2, (CH3)2S, H2S等。
故整體而言,還原環境較不利於作物生長。
(郭魁士,1997:121-123)5.微生物之活動對高等植物的影響(郭魁士,1997:123-125)(1)分解有機質及轉換無機質,使土壤及高等植物均獲益處(正面)。
(2)藻類行光合作用增加土壤之有機質及促進通氣(正面)。
(3)土壤微生物之間的相互競爭,產生抗生素之類物質,抑制或殺死外來細菌有淨化土壤及(灌溉)水源的功能(正面)(4)一般而言,在還原環境下,嫌氣性細菌的作用較不利於作物生長(負面)。
(5)脫氮作用使土壤損失氮素(負面)。
C x H y O z+(x+1/4y-1/2z)O2CO2+1/2yH2O (1)n(C x H y O z)(原生質)+NH3+(nx+n/4y-n/2z-5)O2+能量C5H7NO2+(nx-5)CO2+1/2(ny-4)H2O (2)C5H7NO2+5O25O2+2H2O+NH3+能量 (3)原生質(微生物的增長)合成作用有機質+氧+微生物氧化(呼吸)隨水排出熱圖3-1、好氣性環境微生物分解過程示意圖(酸性分解)(鹼性分解)有機物+微生物+醇+CO2, NH3, H2S+能+CH4+能2甲烷細菌之作用圖3-2、嫌氣性環境微生物分解過程示意圖第二節、土壤有機質一、土壤有機質的形成與環境1.地球上碳素的來源及變化土壤有機質源自光合作用,有機質即是含碳化合物,主由碳、(氫)、氧二(三)元素所組成。
碳對生物和生態系統的重要僅次於水,它構成生物體重量(乾重)的49%,大氣的平均CO2濃度為0.032%(即320ppm),然而近100年來,大氣中的CO2濃度呈現持續上升的趨勢。
夏天由於植物之光合作用較盛吸收大量的CO2,可使大氣中的CO2濃度降到0.032%以下,冬夏大氣中的CO2濃度可相差0.002%。
白天植物行光合作用消耗CO2;夜晚植物進行呼吸作用增加CO2濃度,因此夜晚的CO2濃度比白天多。
(參:孫儒泳主編,1995:297-280)此外,有很多生長在鹼性水域的中的水生植物,在進行光合作用時會釋出碳酸鈣(CaCO3)。
這種純碳酸鈣和黏土混合就可形成泥灰層,泥灰層長期受壓就可轉變為石灰岩,廣泛分布於界各地的石灰岩大都是這樣生成的。
(參:孫儒泳主編,1995:297-280)2.土壤有機質的定義廣義的有機質包括:生物體、有機殘體、腐植質;狹義的有機質常即指「腐植質」。
土壤有機質可分為「有機殘體」(organic residues)與「腐植質」(humus)兩部份,前者包括植物及動物已死部份、動物排洩物等與分解出來呈游離狀態未被「聚合」的有機化合物(如醣類、氨基酸、脂肪、蛋白質、核酸等物質)。
後者為有機聚合物(尤其是酚類聚合物),分子量特大。
3.有機質的分解動植物殘體在土壤內或地面上之分解,其速度與其最終產物為無機鹽類,常依溫度(最重要因素)、水份、空氣、化學物質、p H、微生物種類及本身的抵抗力有關。
(1)溫度:一般而言,溫度愈高則分解速率愈快,合適的溫度為20-30℃,若在10℃以下或35℃以上時分解速率惡化。
所以熱帶地區的丘陵與臺地等排水良好的地區,一般有機質含量甚少。
(2)水份:適量的水份(排水良好)有助於土壤有機質分解,但水份過多且停留過久,會導致排水不良而使空氣(氧氣)缺乏,降低分解速率。
(3)化學成份:有效性(解離)Ca、Mg、Na、K、P、N等元素有助於分解有機質成份之C、H、O。
其中又以N最為重要。
(4)微生物:微生物的作用是土壤有機質分解過程中最重要的機制,可分為好氣性與嫌氣性微生物。
嫌氣性微生物常產生有機酸、醇類、CO2、NH3、H2S、CH4等氣體,好氣性微生物多產生CO2、H2O、NH3、SO4-2、PO4-3等。
(茹至剛,1994,《廢水防治工程》,pp.26-162)(5)土壤p H:視土壤微生物對p H的適應的情形而定,適應良好則分解速率快,反之則反。
好氣性微生物活動適宜的p H為6-9;嫌氣性微生物活動適宜的p H為6.5-8.0間。
(6)化合物對抵抗分解的能力:醣類、澱粉、水溶性蛋白質>粗蛋白質>半纖維>纖維>脂肪類、蠟類、木素等。
(7)時間與生成物:新鮮的生物殘體進入土壤中分解甚速,以後隨時間之增長而趨緩慢,其分解生成物之化學成份近似腐植質者分解甚慢。
4.自然環境與土壤有機質含量(1)多雨地區低窪積水之沼澤地:多雨地區低窪積水之沼澤地水生植物光合作用旺盛,其殘體沉積於地面,由於空氣不能進入,有機質分解速率受阻,遂聚積深厚的有機質層(好氣性微生物分解有機質速度約為嫌氣性微生物之10倍)。