第9章 离群点检测
- 格式:pptx
- 大小:14.57 MB
- 文档页数:25
数据挖掘(五)离群点检测5 异常检测方法异常对象被称作离群点。
异常检测也称偏差检测和例外挖掘。
异常检测的方法:(1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。
(2)基于邻近度的技术:通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。
(3)基于密度的技术:仅当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。
(1)统计方法。
统计学方法是基于模型的方法,即为数据创建一个模型,并且根据对象拟合模型的情况来评估它们。
大部分用于离群点检测的统计学方法都是构建一个概率分布模型,并考虑对象有多大可能符合该模型。
离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。
这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。
异常检测的混合模型方法:对于异常检测,数据用两个分布的混合模型建模,一个分布为普通数据,而另一个为离群点。
聚类和异常检测目标都是估计分布的参数,以最大化数据的总似然(概率)。
聚类时,使用EM算法估计每个概率分布的参数。
然而,这里提供的异常检测技术使用一种更简单的方法。
初始时将所有对象放入普通对象集,而异常对象集为空。
然后,用一个迭代过程将对象从普通集转移到异常集,只要该转移能提高数据的总似然(其实等价于把在正常对象的分布下具有低概率的对象分类为离群点)。
(假设异常对象属于均匀分布)。
异常对象由这样一些对象组成,这些对象在均匀分布下比在正常分布下具有显著较高的概率。
优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。
(2)基于邻近度的离群点检测。
一个对象是异常的,如果它远离大部分点。
模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。
2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。
3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。
(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。
(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。
确定了挖掘任务后,就要决定使用什么样的算法。
(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。
如果模式不满足要求,需要重复先前的过程。
6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。
7.分类过程由两步构成:模型创建和模型使用。
8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。
划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。
matlab lof离群点检测算法离群点检测是数据挖掘和统计学中的一项重要任务,它旨在识别数据集中异常或独特的数据点。
离群点通常表示数据集中潜在的异常模式、错误或欺诈行为。
在许多领域,如金融、医疗、图像处理和自然语言处理,离群点检测都有广泛的应用。
本文将介绍一种基于Matlab的LOF(Local Outlier Factor)离群点检测算法。
一、LOF算法原理LOF算法是一种基于密度的离群点检测方法。
它通过计算每个数据点对本地密度估计的影响来评估其离群程度。
算法的核心思想是,如果一个数据点与邻近数据点的分布不一致,那么它更可能是离群点。
LOF算法通过计算每个数据点对邻近数据点的局部影响,并使用这些影响来评估每个数据点的离群程度。
二、Matlab实现步骤1. 导入数据:首先,将需要检测离群点的数据导入Matlab中。
数据可以来自各种格式,如CSV文件、Excel文件或直接从其他应用程序导入。
2. 创建LOF对象:在Matlab中,可以使用fit方法创建一个LOF对象。
该对象将用于计算每个数据点的离群程度。
3. 拟合模型:使用LOF对象,可以对数据进行多次拟合,以获取每个数据点的离群程度估计。
4. 检测离群点:使用detect方法,可以检测出数据集中离群程度最高的数据点。
这些点可以被视为潜在的异常模式、错误或欺诈行为。
5. 结果可视化:可以使用Matlab的绘图功能,将检测到的离群点可视化,以便更好地理解它们的分布和性质。
三、应用示例假设我们有一组股票价格数据,我们希望检测出价格波动异常的数据点作为潜在的离群点。
首先,我们将数据导入Matlab中,并使用LOF算法创建LOF对象。
然后,我们拟合模型并检测出离群点。
最后,我们将结果可视化,以便更好地理解这些离群点的性质和分布。
四、结论LOF离群点检测算法是一种有效的离群点检测方法,它能够识别出数据集中异常或独特的数据点。
通过在Matlab环境中实现LOF算法,我们可以方便地进行离群点检测,并获得准确的离群程度估计。
简述离群点检测方法,以及各个方法的优缺点概述说明1. 引言1.1 概述离群点检测是一种数据分析的方法,它旨在识别样本中的异常值。
这些异常值通常与其余的数据点有明显不同的特征或行为。
离群点检测可以应用于各个领域,如金融欺诈检测、网络入侵检测、医学异常检测等。
1.2 文章结构本文将介绍几种常用的离群点检测方法,并对它们的优缺点进行比较。
首先,第二节将详细阐述各种离群点检测方法的原理和过程。
接下来,在第三节和第四节中,我们将分别讨论方法一和方法二的优缺点。
最后,在结论部分,我们将总结各个方法的适用场景和限制。
1.3 目的本文的目标是帮助读者了解不同离群点检测方法之间的差异,并通过对比它们的优缺点来选择合适的方法。
这将有助于研究人员和从业者在实际应用中更好地解决离群点问题,提高数据质量和决策准确性。
2. 离群点检测方法离群点检测是数据挖掘和异常检测领域的一个重要任务,它旨在发现与其他数据点不一致的异常观测值。
在本节中,我们将介绍几种常见的离群点检测方法。
2.1 孤立森林算法(Isolation Forest)孤立森林算法是一种基于树的离群点检测方法。
该方法通过随机选择特征和随机划分来构建一些孤立树,并利用路径长度度量样本的异常值程度。
相比于传统基于距离的方法,孤立森林在处理高维数据上效果更好,并且能够有效地应对大规模数据集。
优点:- 可以有效地处理大规模数据集;- 在处理高维数据时表现较好;- 不受数据分布影响。
缺点:- 对于较小的样本集效果可能不如其他算法;- 对噪声敏感。
2.2 K均值算法(K-means)K均值算法是一种常用的聚类算法,但也可以用于离群点检测。
该方法通过将观测值归类到最近的质心,并计算每个观测值与其所属簇的平均距离,来确定是否为离群点。
如果观测值的平均距离超过了给定的阈值,就将其标记为离群点。
优点:- 简单且易于实现;- 对于有着明显聚类结构的数据集有效。
缺点:- 对初始质心的选择敏感;- 对噪声和孤立样本敏感;- 对数据分布不均匀的情况效果较差。
离群点检测(异常检测)是找出其行为不同于预期对象的过程,这种对象称为离群点或异常。
离群点和噪声有区别,噪声是观测变量的随机误差和方差,而离群点的产生机制和其他数据的产生机制就有根本的区别。
全局离群点:通过找到其中一种合适的偏离度量方式,将离群点检测划为不同的类别;全局离群点是情景离群点的特例,因为考虑整个数据集为一个情境。
情境离群点:又称为条件离群点,即在特定条件下它可能是离群点,但是在其他条件下可能又是合理的点。
比如夏天的28℃和冬天的28℃等。
集体离群点:个体数据可能不是离群点,但是这些对象作为整体显著偏移整个数据集就成为了集体离群点。
离群点检测目前遇到的挑战•正常数据和离群点的有效建模本身就是个挑战;•离群点检测高度依赖于应用类型使得不可能开发出通用的离群点检测方法,比如针对性的相似性、距离度量机制等;•数据质量实际上往往很差,噪声充斥在数据中,影响离群点和正常点之间的差别,缺失的数据也可能“掩盖”住离群点,影响检测到有效性;•检测离群点的方法需要可解释性;离群点检测方法1. 监督方法训练可识别离群点的分类器;但是监督方法检测离群点目前遇到几个困难:1.两个类别(正常和离群)的数据量很不平衡,缺乏足够的离群点样本可能会限制所构建分类器的能力;2.许多应用中,捕获尽可能多的离群点(灵敏度和召回率)比把正常对象误当做离群点更重要。
由于与其他样本相比离群点很稀少,所以离群点检测的监督方法必须注意如何训练和如何解释分类率。
One-class model,一分类模型考虑到数据集严重不平衡的问题,构建一个仅描述正常类的分类器,不属于正常类的任何样本都被视为离群点。
比如SVM决策边界以外的都可以视为离群点。
2.无监督方法正常对象在其中一种程度上是“聚类”的,正常对象之间具有高度的相似性,但是离群点将远离正常对象的组群。
但是遇到前文所述的集体离群点时,正常数据是发散的,而离群点反而是聚类的,这种情形下更适合监督方法进行检测。