小学奥数—约数与倍数(一)
- 格式:pdf
- 大小:597.68 KB
- 文档页数:6
第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a 和b ,如果a |b ,我们就称a 是b 的约数(因数),b 是a 的倍数.根据定义,我们很容易找到一个数的所有约数,例如对12:因为12 1 12 2 6 3 4 ,可知12可以被1、2、3、4、6、12整除,那么它的约数有 1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“ 成对出现”的特征,也就是:最大约数对应最 小约数、第二大约数对应第二小约数等. 所以在写一个数的所有约数时,可以逐对写出.另 外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1. 12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数, 从而可就算出它的约数个数.但是对很大的数,例如 20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知 72共12个约数,分别为1、72; 2、36; 3、24; 4、18;6、12; 8、9.因为72的约数能整除72,而72的所有质因数也都能整除 72,所以对72进 行质因数分解,有: 72 23 32,那么72的所有约数应当由若干个 2与若干个3构成.显 然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共4 3 12个,见下表(注意20 1、30 1 ):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:今天,我们来学习数论中再根据它计算第三大的约数.约数个数等于指数加再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225,720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600 ,那说明约数一定包含在3600的因数中•我们知道4 2 23600 2 3 5,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数,有偶数个约数的数一定不是平方数.前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .7222122231 02 03 0320301 21 302 22304 23 308 31 20 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?722212223前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .1 02 03 0320301 21 302 22304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122230 01 02 03 0前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .30 20 301 21 302 22 304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?。
最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程:一、基本概念知识1.公约数和最大公约数①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。
自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,…自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1)必须每次都用个数的公约数去除;(2)一直除到个数的商互质(但不一定两两互质);(3)个数的最大公约数即为短除式中所有除数的乘积。
求个数的最小公倍数:(1)必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3)个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。
1. 本講主要對課本中的:約數、公約數、最大公約數;倍數、公倍數、最小公倍數性質的應用。
2. 本講核心目標:讓孩子對數字的本質結構有一個深入的認識,例如:(1)約數、公約數、最大公約數;倍數、公倍數、最小公倍數的內在關係;(2)整數唯一分解定理:讓學生自己初步領悟“任何一個數字都可以表示為...⨯⨯⨯☆☆☆△△△的結構,而且表達形式唯一”一、 約數、公約數與最大公約數概念(1)約數:在正整數範圍內約數又叫因數,整數a 能被整數b 整除,a 叫做b 的倍數,b 就叫做a 的約數;(2)公約數:如果一個整數同時是幾個整數的約數,稱這個整數為它們的“公約數”;(3)最大公約數:公約數中最大的一個就是最大公約數;(4)0被排除在約數與倍數之外1. 求最大公約數的方法①分解質因數法:先分解質因數,然後把相同的因數連乘起來.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的約數,然後相乘.例如:2181239632,所以(12,18)236=⨯=; ③輾轉相除法:每一次都用除數和餘數相除,能夠整除的那個餘數,就是所求的最大公約數.用輾轉相除法求兩個數的最大公約數的步驟如下:先用小的一個數除大的一個數,得第一個餘數;再用第一個餘數除小的一個數,得第二個餘知識點撥教學目標5-4-1.約數與倍數(一)數;又用第二個餘數除第一個餘數,得第三個餘數;這樣逐次用後一個餘數去除前一個餘數,直到餘數是0為止.那麼,最後一個除數就是所求的最大公約數.(如果最後的除數是1,那麼原來的兩個數是互質的).例如,求600和1515的最大公約數:15156002315÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公約數是15.2. 最大公約數的性質①幾個數都除以它們的最大公約數,所得的幾個商是互質數;②幾個數的公約數,都是這幾個數的最大公約數的約數;③幾個數都乘以一個自然數n ,所得的積的最大公約數等於這幾個數的最大公約數乘以n .3. 求一組分數的最大公約數先把帶分數化成假分數,其他分數不變;求出各個分數的分母的最小公倍數a ;求出各個分數的分子的最大公約數b ;b a即為所求. 4. 約數、公約數最大公約數的關係(1)約數是對一個數說的;(2)公約數是最大公約數的約數,最大公約數是公約數的倍數二、倍數的概念與最小公倍數(1)倍數:一個整數能夠被另一整數整除,這個整數就是另一整數的倍數(2)公倍數:在兩個或兩個以上的自然數中,如果它們有相同的倍數,那麼這些倍數就叫做它們的公倍數(3)最小公倍數:公倍數中最小的那個稱為這些正整數的最小公倍數。
1.学习完全平方数的性质; 2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是知识点拨教学目标5-4-4.完全平方数及应用(一)完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
9、约数与倍数【约数问题】例1 用1155个同样大小的正方形拼成一个长方形,有______种不同的拼法。
(上海市第五届小学数学竞赛试题)讲析:不论拼成怎样的长方形,它们的面积都是1155。
而长方形的面积等于长乘以宽.所以,只要将1155分成两个整数的积,看看有多少种方法。
一般来说,约数都是成对地出现。
1155的约数共有16个。
16÷2=8(对)。
所以,有8种不同的拼法。
例2 说明:360这个数的约数有多少个?这些约数之和是多少?(全国第三届“华杯赛”决赛第一试试题)讲析:将360分解质因数,得360=2×2×2×3×3×5=23×32×5。
所以,360的约数个数是:(3+1)×(2+1)×(1+1)=24(个)这24个约数的和是:例3 一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?(全国第一届“华杯赛”决赛第一试试题)讲析:这个数是2×2×2×2×2×3×3×3×5×5×7。
把两位数从99、98、……开始,逐一进行分解:99=3×3×11; 98=2×7×7;97是质数; 96=2×2×2×2×2×3。
发现,96是上面数的约数.所以,两位数的约数中,最大的是96.例4 有8个不同约数的自然数中,最小的一个是______。
(北京市第一届“迎春杯"小学数学竞赛试题)讲析:一个自然数N,当分解质因数为:因为8=1×8=2×4=2×2×2,所以,所求自然数分解质因数,可能为:27,或23×3,或2×3×5,……不难得出,最小的一个是24。
(十六)约数和倍数例1.边长1米的正方体2100个,堆成了一个实心的长方体,它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?例2.正整数a乘以120,得到一个完全平方数,a的最小值是多少?例3.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟响铃又亮灯。
问:下一次响铃又亮灯是几点钟?例4.四个小孩的年龄依次相差1岁,他们年龄的乘积是5040,他们的年龄和是多少岁?例5.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数有许多约数是两位数,这些两位的约数中,最大的是几?例6.两个自然数的最大公约数是7,最小公倍数是420。
已知其中一个自然数是42,那么另一个自然数是多少?例7. 说明:360这个数的约数有多少个?这些约数的和是多少?例8.求100以内恰好有8个约数(包括1和它本身)的所有自然数。
例9.已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
例10.在100以内与77互质的所有奇数之和是多少?练习1. 求720的所有约数的个数。
2. 正整数a乘以378,得到的最小完全平方数是多少?3. 能被2,3,4,5,6,7,8,9,10这九个数整除的最大的六位数是多少?4. 50以内最小质数与最大质数之和是多少?5. 将长为6厘米、宽为4厘米、高为8厘米的长方体积木,叠成最小的正方体,最少要用积木多少块?6. 长96厘米、宽72厘米的长方形白纸裁成同样大小的正方形且无剩余,至少可以裁成多少块?7. 求50以内约数最多的自然数。
8.小红每隔5分钟发一封电子邮件,小明每隔9分钟发一封电子邮件,小丽每隔12分钟发一封电子邮件,今天上午8点三人同时发出电子邮件,下一次同时发电子邮件是什么时间?9. A,(A+4),(A+6),(A+10),(A+12),(A+16),(A+22)均为质数,那么A是多少?10. 求5040的所有约数的和。
最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程: 一、基本概念知识1.公约数和最大公约数①如果一个自然数a 能被自然数b 整除,那么称a 为b 的倍数,b 为a 的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。
自然数n a a a ,,,21 的最大公约数通常用符号(n a a a ,,,21 )表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,… 自然数na a a ,,,21 的最小公倍数通常用符号[na a a ,,,21 ]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别: 求n 个数的最大公约数:(1) 必须每次都用n 个数的公约数去除;(2) 一直除到n 个数的商互质(但不一定两两互质); (3) n 个数的最大公约数即为短除式中所有除数的乘积。
五年级奥数-约数和倍数1.两个三位数的最大公约数是29,它们的最小公倍数是4959。
那么这两个三位数的差是多少?2.两个自然数的和是60,它们的最小公倍数与最大公约数的和是84,则这两个数分别是多少?3.三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么每小段最长多少厘米?一共可截成多少段?4.1155的两位约数中最大的一个是多少?5.如果甲乙两数的最大公约数是6,最小公倍数是90,如果甲数是18,那么乙数是多少?6.写出从360到630的自然数中有奇数个约数的数。
五年级奥数-约数和倍数答案1解析:199294959⨯⨯=,所以这两个三位数分别为929⨯、1929⨯,所以这两个三位数的差是290)919(29=-⨯。
2解析:设这两个自然数的最大公约数是m ,这两个自然数分别为ma 、mb (a 与b 互质,且不妨假设a >b ),那么这两个自然数的最小公倍数是mab ,依据题意有:⎩⎨⎧=+=+8460mab m mb ma 即⎩⎨⎧=+=+84)1(60)(ab m b a m 说明m 是60和84的公约数,可能为12、6、4、3、2、1。
当m =12时,⎩⎨⎧=+=+715ab b a ,解得⎩⎨⎧==23b a ,所以⎩⎨⎧==2436mb ma 。
当m =6时,⎩⎨⎧=+=+14110ab b a ;当m =4时,⎩⎨⎧=+=+21115ab b a ;当m =3时,⎩⎨⎧=+=+24120ab b a ;当m =2时,⎩⎨⎧=+=+42130ab b a ;当m =1时,⎩⎨⎧=+=+84160ab b a ;上述方程组都没有整数解,舍去。
所以,这两个数分别是36和24。
3解析:每小段的长度是120、180、300的约数,也是120、180和300的公约数。
120、180和300的最大公约数是60,所以每小段的长度最大是60厘米,一共可截成120÷60+180÷60+300÷60=10段。
最大公约数与最小公倍数实际生活中,我们经常会碰到这样一些问题,把一张大长方形纸片平均裁成若干张小的长方形或正方形纸片而没有剩余,怎么办?这一类问题其实是最大公约数和最小公倍数在实际中的运用。
最大公约数和最小公倍数的知识在解决生活实际问题中经常用到,在数学竞赛中也占有一定的比重。
这一讲我们就来研究这个问题。
【例1】一块长96厘米,宽84厘米的铁皮,根据需要且不能浪费边角料,要剪出面积相等的最大的正方形铁皮,问:最多可以剪出这样的正方形铁皮多少块?[分析]根据题意,要求不浪费材料,并要剪成最大的正方形,可知剪出的正方形铁皮片的边长一定既是长方形铁皮片长的约数,又是这个长方形铁皮片宽的约数,也就是长方形铁皮片长和宽的公约数,因为要求最大的正方形块数,正方形的边长一定是长方形铁皮长和宽的最大公约数,进而就可求所剪正方形的块数了。
[解]解法一:(96、84)=12所剪最大正方形面积是:12×12=144(平方厘米)长方形铁皮的面积是:96×84=8064(平方厘米)能剪出面积相等的最大正方形的块数是:8064÷144=56(块)解法二:(96、84)=12长里面有几个最大正方形的边长:96÷12=8(个)宽里面有几个最大正方形的边长:84÷12=7(个)8×7=56(块)答:可剪出大小相等面积最大的正方形56块。
【例2】在一次庆祝活动中,某公司买来336个苹果,252个桔子,210个梨,用这些果品,最多可以分成多少份同样的礼物?在每份礼物中,苹果、桔子、梨各有多少个?[分析]苹果总数=每份中苹果数×份数,因此,份数应是苹果总数的约数,同样份数也应该是桔子总数和梨总数的约数,所分礼物的份数一定是苹果、桔子、梨的总数的公约数。
即一定要是336、252、210的公约数。
题目求最多可以分多少份,就是求336、252、210的最大公约数。
[解](336、252、210)=42,所以这样的水果最多可以分成42份相同的礼品,并且在每份礼品中,苹果有:336÷42=8(个)桔子有:252÷42=6(个)梨有:210÷42=5(个)[评析]这道题中,因为分成的是同样的礼物,所以份数是三个数量的最大公约数。
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
华杯赛数论专题:约数与倍数基础知识:1. 如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数. 自然数a、b、c的最大公约数通常用符号(a,b,c)表示.例如:(8,12)=4,(6,9,15)=3.2. 互质定义:如果两个或几个数的最大公约数为1,则称这两个或几个数互质.3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数. 自然数a、b、c的最小公倍数通常用符号[a,b,c]表示.例如:[8,12]=24,[6,9,15]=90.4.约数个数公式、约数和公式.5.求最大公约数和最小公倍数的基本方法:(1)分解质因数法:将每个数分解质因数,观察这些数中包含哪些质因数,①找公共部分,并将这些数的公共部分相乘,所得乘积即为这组数的最大公约数;②观察这些质因数的最高次方,并相乘,所得乘积即为这组数的最小公倍数.(2)辗转相除法: 两数为a、b的最大公约数(a,b)的步骤如下:用b除a,得a =bm......x(0≤x). 若x=0,则(a,b)=b;若x≠0,则再用x除b,得b=xn......y (0≤y).若y=0,则(a,b)=x,若y≠0,则继续用y除x,则继如此下去,直到能整除为止.其最后一个非零除数即为(a,b).(3)两个数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积:(a,b)×[a,b] =a×b.例题:例1.360有多少个约数?【答案】24【解答】,所以360共有24个约数.例2. 一个数是6的倍数,但它的约数之和与6互质,这个数最小是.【答案】36【解答】这个数可以表示成,与6互质,所以x≥2,y≥2,故最小数为.例3.甲、乙两个自然数的乘积比甲数的平方小1988,那么满足上述条件的自然数有几组?【答案】6组【解答】,由此得a和a-b的值为1988的互补因子.1988有(1+1)×(1+1)×(2+1)=12个约数,所以答案为6组.例4.已知将自然数84的全部约数的乘积分解质因数为,那么△+◇+□等于.【答案】24【解答】,它有3×2×2=12个约数.这些约数可以分成两两一组,使得同一组的两个数的乘积就是84,因此所有这些约数的乘积就是 .所以△+◇+□=12+6+6=24.例5.两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1.那么这两个数分别是 .【答案】175和16【解答】,两数的约数个数相差1,则两数约数的个数必为一奇一偶.而一个数的约数个数为奇数,它必为完全平方数,它可能是1、、、、、,经试验只有这个平方数取,另一个数为时,分别有5、6个约数.所以这两个数分别为175和16.例6.三位数A的所有奇约数之和是403,那么A最大可能是多少?【答案】900【解答】先考虑A的奇数部分B,利用奇偶分析可知B有奇数个约数,所以B是完全平方数,又403<21×21,所以B只可能是、……可得B=225. 那么A最大是225×4=900.例7.一个正整数是2004的倍数,且恰有24个约数是偶数,那么这个数最多有个约数是奇数.【答案】12【解答】2004是4的倍数,所以偶约数至少是奇约数的2倍,所以为12个.例8.小文买红蓝两种笔各1支用了17元,两种笔的单价都是整元,并且红笔比蓝笔贵.小张打算用35元来买这两种笔(允许全部买其中一种),可是他无论怎样买都不能恰好把35元用完,问红笔、蓝笔每支各多少元?【答案】红笔每支13元,蓝笔每支4元【解答】35=5×7,两种笔的单价不能是5元和7元(否则35元可全部用完);由于不是5元和7元,那么也不是17-5=12(元)和17-7=10(元);17元可用完,而35元不能用完,那么笔价不会是35-17=18(元)的约数:1、2、3、6、9、18,当然也不会是17-1=16、17-2=15、17-3=14、17-6=11、17-9=8,故笔价又排除了:1、2、3、6、8、9、11、14、15、16.综上所述,只有4和13未被排除,而4+13=17,所以红笔每支13元,蓝笔每支4元.例9.求15708和6468的最大公约数、最小公倍数.【答案】924,109956【解析】方法一:方法二:15708=6468×2+2772 6468=2772×2+9242772=924×3例10.1007、10017、100117、1001117和10011117的最大公约数是 .【答案】53【解析】因为1007×10-10017=53,所以最大公约数肯定是53或1.因为1007=53×19,而且数列中每个数都是前一个数的10倍减去53,所以只要前一个数是53的倍数那么后一个数就也是53的倍数,因此数列中每个数都是53的倍数.例11.已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【答案】147或105【解析】要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b.因为这两个数的最大公约数是21,故设a=21m,b=21n,且(m,n)=1.因为这两个数的最小公倍数是126,所以126=21×m×n,于是m×n=6,因此,这两个数的和为21+126=147,或42+63=105.所以这两个数的和为147或105.例12.已知自然数A、B满足以下两个性质:(1)A、B不互素;(2)A、B的最大公约数与最小公倍数之和为35.那么A+B的最小值是多少?【答案】25【解析】A、B的最大公约数一定是它们最小公倍数的约数.因为A、B的最大公约数与最小公倍数的和是35,所以35是两数最大公约数的倍数.它们的最大公约数可能是5或7.如果A、B的最大公约数是5,则A、B的最小公倍数是30,此时有A=5、B=30或A=10、B=15;如果A、B的最大公约数是7,则A、B的最小公倍数是28,此时有A=7,B=28.所以A+B的最小值为10+15=25.例13.两个数的最小公倍数比它们的最大公约数的3倍多15,请写出这两个数的所有可能值.【答案】1和18, 2和9, 3和24, 5和30,10和15, 15和60【解析】设两个数a、b,则[a,b]=3×(a,b)+15,且15是(a,b)的倍数,故a和b可以为1和18, 2和9, 3和24, 5和30,10和15, 15和60.例14. 三位数☆◇☆与四位数☆☆◇◇的最大公约数是22,那么☆+◇=.【答案】6【解析】两个数的最大公约数是22,☆☆◇◇是11的倍数,所以◇是偶数,22是☆◇☆的约数,☆是偶数,◇=2☆,所以◇=4,☆=2,所以◇+☆=6.例15.试用2,3,4,5,6,7六个数字组成两个三位数,使这两个三位数与540的最大公约数尽可能大?【答案】324、756【解析】因为,而2,3,4,5,6,7中只有一个5,因此这六个数字组成的两个三位数中不会有公约数5,所以这两个三位数与540的最大公约数只可能为,再进行试验,108×2=216,216中1不是已知数字,108×3=324,还剩5,6,7三个数字,而108×7=756,于是问题得到解决.例16.定义表示a和b的最大公约数,那么使得和同时成立的三位数a= .【答案】237【解析】根据题意:是21的倍数,所以a是3的倍数,a除以7余6,a+63是60的倍数,a除以4余1,a除以5余2,所以a=60×4-3=237.例18.已知a与b,a与c,b与c的最小公倍数分别是60,90和36。
奥数技巧倍数与约数在数学学科中,奥数(奥林匹克数学)是指一种高难度的数学竞赛,旨在培养学生的数学思维能力和解决问题的能力。
奥数涉及的内容广泛,其中的技巧和方法对于提高数学水平和解决实际问题非常有帮助。
本文将重点介绍奥数技巧中与倍数与约数相关的知识和方法。
1.倍数倍数是数学中的一个重要概念,指的是某个数可以被另一个数整除的情况。
具体来说,如果一个数可以被另一个数除尽,那么前者就是后者的倍数。
在奥数中,寻找和计算倍数有一些常用的技巧。
1.1 规律法对于某个给定的数,通过观察它的倍数列表,可以发现其中的规律。
例如,我们想找到50的倍数,可以列出50的倍数表:50,100,150,200,250...我们可以发现,这些数每次增加50。
因此,50的倍数可以用递推公式表示为:50n(n为正整数)这样,我们就可以快速计算任意的50的倍数。
1.2 分解法有时候,我们需要找到一个数的所有倍数。
这时可以通过分解的方法来寻找。
以10为例,我们可以将10分解为2和5的乘积。
因此,10的倍数可以由2和5的倍数相乘得到。
例如:2的倍数:2,4,6,8,10,...5的倍数:5,10,15,20,...因此,10的倍数可以由2和5的倍数相乘得到:10的倍数:10,20,30,40,...2.约数与倍数相反,约数指的是可以整除某个数的因数。
寻找和计算约数也是奥数中的常见问题。
2.1 列举法对于某个数,我们可以逐个列举出所有小于等于它的正整数,看是否可以整除该数。
这种方法适用于小数。
以12为例,我们可以列举出12的所有约数:1,2,3,4,6,12可以看到,1和12都是12的约数,2和6也都是12的约数。
其中的规律是,12的约数可以用两个数相乘得到。
因此,我们可以通过分解12来找到它的约数。
2.2 分解法分解法是寻找约数的一种常用方法。
对于一个数,我们可以将它分解为质数的乘积,然后找到所有可能的组合。
以24为例,我们将24分解为2、2、2和3的乘积:24 = 2 * 2 * 2 * 3根据分解的结果,我们可以得到24的所有约数:1,2,3,4,6,8,12,24通过分解法,我们可以更快地找到一个数的所有约数。
第三讲提高篇之约数与倍数(一)约数与倍数注:0被排除在约数与倍数之外最大公约数:如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数.在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数.例如(8,12) = 4,(6,9,15) =3最小公倍数:如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数.例如: [8,12] = 24,[6,9,15] = 90求最大公约数:(一)分解质因数(二)短除法求最小公倍数:(一)分解质因数(二)短除法(三)求最大公约数法最大公约数与最小公倍数的常用性质①两个自然数分别除以它们的最大公约数,所得的商互质。
②两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
③对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍课上例题【例1】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【例2】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【例3】一次考试,参加的学生中有1/7得优,1/3得良,1/2得中,其余的得差,已知参加考试的学生不满50 人,那么得差的学生有()人.课后习题基础篇:【闯关1】.两个数的差是6,它们的最大公约数可能是多少?【闯关2】张阿姨把225 个苹果、350 个梨和150 个桔子平均分给小朋友们,最后剩下9 个苹果、26个梨和6 个桔子没有分出去。
请问:每个小朋友分了多少个苹果?提高篇【闯关3】有4 个不同的正整数,它们的和是1111。
请问:它们的最大公约数最大能是多少?【闯关4】两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?巅峰篇【闯关5】甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126。
小学奥数数论题型:约数与倍数
1.28的约数之和是多少?
2.一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24这个两位数是多少?
3.两个自然数的和是50,它们的公约数是5,则这两个数的差是多少?
4.用长是9公分、高是7公分的长方形木块叠成一正方体,至少需要这种长方体木块多少块?
5.张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得_元钱利润,那么他必须卖出苹果多少个?
6.一个公共汽车站,发出五路车,这五路车为每隔3、5、9、_、_分钟发一次,第一次同时发车以后,多少分钟又同时发第二次?
7.饲养员给三群猴子分花生,如只分给第一群,每只猴子可得_粒;如只分给第二群,每只猴子可得_5粒;如只分给第三群,每只猴子可得_粒,那么平均给三群猴子,每只猴可得花生多少粒?
8.一块长48公分、宽42公分的布。
不浪费边角料,能剪出的正方形布片多少块?
9.这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是多少?
_.把26,33,34,35,63,85,91,_3分成若干组,要求每一组中任意两个数的公约数是1,那么至少要分成多少组?
小学奥数数论题型:约数与倍数.到电脑,方便收藏和打印:。
小学奥数知识点:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法小学奥数经典题1.两辆汽车从A,B两地同时出发相向而行,客车行完全程要8小时,货车行完全程要10小时,两车相遇后又各自往前驶去,已知出发5小时后两车相距50千米,问A,B两地相距多少千米?2.有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?3.工程队挖一条水渠,第一天挖了全长的多28米,第二天挖了全长的少20米,这时剩下22米没挖完.这条水渠全长多少米?4.如图,一个边长为40厘米的正方形ABCD的场地,蚂蚁和蜗牛同时从A 点出发,蚂蚁以5厘米/分钟的速度沿线路A→B→C→D行走,蜗牛以2厘米/分钟的速度沿线路A→D行走.出发18分钟时,蚂蚁走到E点,蜗牛走到F点,求三角形AEF的面积是多少平方厘米?5.运来一批水果.第一天卖出总数的15%,第二天卖出160千克,剩下的与卖出的重量的比是1:3.这批水果共有多少千克?。
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出知识点拨教学目标5-4-1.约数与倍数(一)各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
倍数与约数我们知道6是2的3倍,即6=2×3 一般地,如果a=b×c,那么我们就说a是b (c)的倍数,而b(c)称为a的约数。
6=2×3,也就是6÷2=3,a=b×c,也就是a÷b=c,所以a是b的倍数(b是a的约数),那么a÷b余数为0,这时称a被b整除或b整除a。
如6被2整除(2整除6).例1:求出12的全部约数。
分析:看看1,2,3.。
12这些数中,哪些能整除1212=1×12=2×6=3×4 所以12有6个约数。
如果一个大于1的整数a,只有2个约数(即1与a),那么a就称为质数。
如2、3、5、7。
例2:从7、1、4、6、0,的卡片中抽取4张,组成若干个四位数,如是2的倍数有几个?如是5的倍数有几个?如是3的倍数有几个?例3:7824是不是9的倍数?练习:1、求15的全部约数2、101是不是质数?3、写出196的全部约数4、有0、1、4、7、9五张卡片去四张组成能被3整除的四位数,有几个?这些数从小到大排列第3个是多少?5、一个数有8个约数,这数最小是多少?6、首位为4,并能被3整除的三位数有多少个?提升题7、下面这个四十一位数55.。
599.。
9(5和9各有20个)能被7整除,那么中间方框内的数字是几?8、判断下列各数,哪些有因数3,哪些有因数9,说明理由7212 62007 180018 450927 25489、四位数7a2b被2、3、5整除,求a、b10、四位数198x被2、3整除,求x11、被2、3、5整除的三位数中最大的是多少?最小的是多少?12、什么样的数,约数的个数是奇数思考题13、用1962a8表示六位数,如果能被99整除,求 a14、已知整数1x2x3x4x5能被11整除,求所有满足条件的整数15、某小学学生张明做数学题时发现任意一个三位数,连着写2次得到一个六位数,这六位数一定能被1、11、13整除,试说明理由。
5-4-1.约数与倍数(一)
教学目标
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,
例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;
一、约数、公约数与最大公约数概念
,所以最大公约数与最小公倍数有如下一些基本关系:
,即两个数的最大公约数与最小公倍数之积等于这两个数的积;
模块一、求最大公约数
个苹果平均分给小朋友,分完后梨剩下2个,。