探索三角形全等的条件(2)
- 格式:ppt
- 大小:601.50 KB
- 文档页数:26
第三课时 探索三角形全等的条件(二)一、 学习目标:掌握三角形的“角边角”、“角角边”的全等条件;二、温故知新:1、三边对应相等的两个三角形全等,简写为__________或___________;2、如图,在△ABC 中,PA=PB ,PC 是AB 边上的中线,PC 能平分∠APB 吗?证明∵PC 是AB 边上的中线,∴AC=__________( )在_________________________中∴________≌__________ (___________)∴_________=_________ (__________________)∴PC 平分∠APB3、如图, (1)∵AB ∥CD (已知)∴∠_____=∠_____(_______________)(2)∵AD ∥BC (已知)∴∠_____=∠_____(_______________)4、如图,∵EA ⊥AD ,FD ⊥AD (已知)∴∠______=∠______=90°(______________)三、探索新知:1、如果“两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60°和80°,它们所夹的边为2cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:________及其_________分别__________的两个三角形____________; 简写成“____________”或“___________”2、如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60°和45°,一条边长为3cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:_______分别_______其中一组______的对边_____的两个三角形_______; 简写成“____________”或“___________”⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________四、巩固新知:1、图中的两个三角形全等吗?依据是什么?依据(_____________) 依据(_____________)2、如图,AB=AC ,∠B=∠C ,你能证明△ABD ≌△ACE 吗?证明:在_________________________中∴________≌__________ (___________)3、如图,∠B=∠C ,AD 平分∠BAC ,你能证明,△ABD ≌△ACD 吗?若BD=3cm ,则CD 有多长? 解:∵,AD 平分∠BAC (已知)∴∠________=∠________ ( )在_________________________中∴________≌__________ (___________)∴BD=________=________(___________)4、如图,已知AB=CD ,∠B=∠C ,求证△ABO ≌△DCO ;证明: 在_________________________中∴________≌__________ (_________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________五、提高练习:5、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD=BC ,你能说明BO=DO 吗? 证明:∵AD ∥BC ,(已知)∴∠_____=∠_____∠_____=∠_____ ( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)6、如图,在△ABC 中,AD 是BC 边上的中线, 且BE ⊥AD 于E ,CF ⊥AD 于F , 求证:BE=CF证明:∵AD 是BC 边上的中线,(已知)∴_______=________ ( )∵BE ⊥AD ,CF ⊥AD∴_________=_________ =90°( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)7、如果,AB ∥CD ,∠A=∠D ,BF=CE ,∠AEB=80°,求∠DFC 的度数? 证明:∵AB ∥CD , (已知)∴ ∠______=∠_______ ( )∵BF=CE∴BF-______=CE-________即_______=________在_________________________中∴________≌__________ (___________)∴∠DFC =________=________ (______________________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________8、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1-_______=∠2-_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)9、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1+______=∠2+_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)10、如图,AB ⊥BC 于B ,DF ⊥AC 于F ,BC=BE ,△ABC ≌△DBE ; 证明:∵AB ⊥BC , (已知)∴ ∠______=∠______=90°( )∵DF ⊥AC , (已知)∴ ∠______=90° ( )∴ ______+∠C=______+∠C∴ __________=__________在_________________________中∴_________≌_________ (___________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________。
数学教学设计教 材:义务教育教科书·数学(八年级上册)1.3 探索三角形全等的条件(2)标1.会利用基本事实:“边角边”判别两个三角形是否全等.2.在基本事实“边角边”运用的过程中能够进行有条理的思考和简单的推理. 3.经历观察、探索、合作、交流等活动,营造和谐、平等的学习氛围. 点三角形全等的“边角边”条件的应用. 点三角形全等的“边角边”条件的应用.教学过程(教师) 学生活动设计思如图,AB =AC ,还需补充条件,就可根据“SAS ”证明△ABE ≌三月三,放风筝.”如图是小东同制作的风筝,他根据AB =CB ,CBD ,不用度量,就知道AD =所学的知识给予说明.(1)学生思考后给出所补充的条件,并根据所补充的条件,简要证明△ABE ≌△ACD .参考答案:AE =AD .(2)学生思考后回答.参考答案 证明:在△ABD 和△CBD 中,AB =CB (已知),∠ABD =∠CBD (已知),BD =BD (公共边),∴△ABD ≌△CBD (SAS ).∴AD =CD (全等三角形的对应边相等).复习回顾三条件——“SAS会有条理的思考理.EBDCADCB A图,已知:点D 、E 在BC 上,且D =AE ,∠1=∠2,由此你能得出形全等?请给出证明.个问题:察猜想哪两个三角形全等?证明两个三角形全等,已具备了还缺什么条件?缺的这个条件如何获得?知:如图,AB 、CD 相交于点E ,CD 的中点.①△AEC ≌⊿BED . ②AC ∥DB .个问题:证明△AEC ≌△BED ,已具备了还缺什么条件?证明AC ∥DB ,需什么条件?这个得?例包含哪一种图形变换?例1 (1)学生根据图形并结合已知条件作出猜想.(2)学生经历分析例题的过程,口头叙述证明过程. 参考答案:△ABD ≌△ACE .证明:∵∠1+∠ADB =180°,∠2+∠AEC =180°,且∠1=∠2(已知),∴∠ADB =∠AEC (等角的补角相等), 在△ABD 和△ACE 中,BD =CE (已知),∠ADB =∠AEC (已证),AD =AE (已知),∴△ABD ≌△ACE (SAS ).例2 学生经历分析例题的过程,口头叙述证明过程. 参考答案证明:①∵E 是AB 、CD 的中点(已知),∴AE =BE ,CE =DE (线段中点的定义), 在△AEC 和△BED 中,AE =BE (已证),∠AEC =∠BED (对顶角相等),CE =DE (已证),∴△AEC ≌△BED (SAS ). ②∵△AEC ≌△BED (已证),∴∠A =∠B (全等三角形的对应角相等),∴AC ∥DB (内错角相等,两直线平行).本例中,其中一个三角形绕点E 旋转180°后,能与另一个三角形重合.通过问题分学生分清题中直件、间接给出的条隐含的条件,以巩条件判断三角形ABD EC 1 2 CBAE知:如图,点E 、F 在CD 上,且E =BF ,AE ∥BF .:△AEC ≌△BFD .能证得其他新的结论吗?图中的△AEC 可以通过_________所示图形.例3 学生经历分析例题的过程,口头叙述证明过程. 参考答案①∵AE ∥BF (已知),∴∠AEC =∠BFD (两直线平行,内错角相等), 在△AEC 和△BFD 中,AE =BF (已知),∠AEC =∠BFD (已证),CE =DF (已知),∴△AEC ≌△BFD (SAS ).②AC =BD ,∠A =∠B ,∠AEC =∠BFD ,AC ∥BD 等等. ③平移.~17页第1、2、3题. 学生独立完成练习,及时纠正书写中出现的问题.通过练习设运用新知识的过行有条理的思考的推理.节课的学习,你有什么体会?说出. 学生自由表述,其他学生补充.通过学生小的口头表达能力于发表自己看法巩固新知识的学生发挥不同FCBADE。
专题1.7 探索全等三角形的条件(2)-角边角(ASA)(基础检测)一、单选题1.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”【答案】B【分析】由“ASA”可证△EDC≌△ABC.【详解】解:由题意可得∠ABC=∠CDE=90°,在△EDC和△ABC中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC≌△ABC(ASA),故选:B.【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.2.如图,AB∥FC,E是DF的中点,若AB=10,CF=6,则BD等于()A.6 B.4 C.3 D.2【答案】B【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,那么BD的长就不难求出.【详解】∵AB∥FC,∴∠ADE=∠F,∵E是DF的中点,∴DE=EF,在△ADE和△CFE中,ADE FDE FEAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CFE(ASA),∴AD=CF=6,∴BD=AB﹣AD=10﹣6=4,故选:B.【点睛】此题主要考查了全等三角形的判定与性质,判定两个三角形全等是解题的关键.3.如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【答案】B【分析】结合图,根据全等三角形的判定定理ASA可得到答案【详解】解:根据题意,三角形的两角和他们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形故选:B【点睛】本题考查全等三角形的判定定理4.如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对【分析】根据ASA 进行判断即可.【详解】在三角形①和三角形③中∠B=∠D ,BC=DE ,∠C=∠E ,∴△ABC ≌△FDE (ASA ),故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.5.如图,在ΔABC 和ΔDEF 中,∠A=∠D ,∠B=∠DEF ,要使ABC DEF △≌△,需要添加下列条件中的( )A .AB=EFB .AC=DEC .BC=DFD .AB=DE【答案】D 【分析】添加条件为AB=DE ,根据ASA 推出两三角形全等即可.【详解】解:条件是AB=DE , 理由是:∵在ABC 和DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC DEF △≌△(ASA ),故选D .【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.如图,小强画了一个与已知ABC 全等的DEF ,他画图的步骤是:(1)画DE =AB ;(2)在DE 的同旁画∠HDE =∠A ,∠GED =∠B ,DH ,EG 相交于点F ,小强画图的依据是( )A .ASAB .SASC .SSSD .AAS【分析】根据题意可知全等的条件是两角及夹边,即可得出答案.【详解】根据题意可知,在ABC 和DEF 中,A FDE AB DEB FED ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA ∴≌故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形判定的条件是解题的关键.二、填空题7.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是__.【答案】ASA【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形, 他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA ).故答案为:ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .8.如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E【分析】已知∠1=∠2,就是已知∠ACB =∠DCE ,则根据三角形的判定定理“ASA ”即可证得.【详解】可以添加∠B =∠E .理由是:∵∠1=∠2,∴∠1+∠BCE =∠2+∠BCE ,∴∠ACB =∠DCE ,∴在△ABC 和△DEC 中,ACB DCE BC ECB E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEC (ASA ).故答案是:∠B =∠E【点睛】本题考查了三角形全等的判定,熟练掌握“两角及夹边对应相等的两个三角形全等”是解题关键. 9.如图,∠B =∠DEF ,AB =DE ,若要以“ASA ”证明△ABC ≌△DEF ,则还缺条件_____.【答案】∠A =∠D .【分析】利用全等三角形的判定方法结合ASA 得出即可.【详解】当添加∠A =∠D 时,可证明△ABC ≌△DEF ;理由:在△ABC 和△DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).故答案为∠A =∠D .【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10.如图,要测量水池宽AB ,可从点A 出发在地面上画一条线段AC ,使AC AB ⊥,再从点C 观测,在BA 的延长线上测得一点D ,使ACD ACB ∠=∠,这时量得120m AD =,则水池宽AB 的长度是__m .【答案】120【分析】利用全等三角形的性质解决问题即可.【详解】AC BD ,90CAD CAB ∴∠=∠=︒,CA CA =,ACD ACB ∠=∠,()ACD ACB ASA ∴∆≅∆,120AB AD m ∴==,故答案为120.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.11.如图所示,某三角形材料断裂成A 、B 、C 三块,现要配置与原材料一样的三角形材料,应该选用材料____,理由是____.【答案】C ASA【分析】显然C 中有完整的三个条件,用ASA 易证现要的三角形与原三角形全等.【详解】解:因为C 块中有完整的两个角以及它们的夹边,利用ASA 易证三角形全等,故应带C 块. 故答案为:C ,ASA .【点睛】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.12.如图,ABC ∆的面积为22cm ,AP 与ABC ∠的平分线垂直,垂足是点P ,则PBC ∆的面积为______2cm .【答案】1【分析】延长AP 交BC 于点M ,则由条件可知ABP MBP S S ∆∆=, APC CPM S S ∆∆=,则阴影部分面积为△ABC的一半,可得出答案.【详解】如图,延长AP 交BC 于点M 。