《勾股定理》复习课教学设计
- 格式:doc
- 大小:228.00 KB
- 文档页数:3
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
教学设计学生课前复习勾股定理17.1的内容,做过课本上基础题目之后,又上了这一节复习课,是拓展延伸课,不只是会利用勾股定理求直角三角形三边。
重点是应用勾股定理解决实际问题,所以我设计的题目大都是贴近生活的实例,如测旗杆的高度,求秋千的长。
让学生体会“数学来源于生活,又服务于生活”,激发学生的学习数学的兴趣。
本节课的教学设计为五部分:复习导入-典例分析-综合运用-归纳提升-达标检测。
一、复习导入:学生在课前复习的情况下,教师为强化基础知识,提问勾股定理的内容是什么?学生很快答出,老师接着提问若∠A=90°?若∠B=90°?学生很快答出:若∠A=90°,那么22a2+;若∠B=90°,那b=c么222ba=+。
这样设计的意图是,提醒学生不要形成一种思维定势,c认为勾股定理就是22c2+,要具体问题具体分析。
由此归纳得出ba=要想应用勾股定理,前提条件是什么?引导学生注意:首先是Rt△,其次是哪一个角是直角?勾股定理是初中数学的一个很重要的定理,它在现实生活中有着广泛的应用,今天我们进一步复习勾股定理。
由此导入第二部分-典例分析(一)及针对练习(一)。
典例一:(一次运用勾股定理)(1)、在Rt△ABC中∴∠C=90°.,a=5,b=12,则c= ______(2)在Rt△ABC中∴∠C=90°. ∠A=30°,c=10. 则a= __b=针对练习:(1)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时顶部距底部有(2)在Rt△ABC中∴∠C=90 °. ∠A=45 °,c=10. 则a= ______;b= 。
归纳:学生齐读学习目标,设计意图是让学生明白今天这一节课的目的是干什么?,达到什么程度?设计的题目是针对性特强,分两类:一般直角三角形和特殊直角三角形。
特殊直角三角形,特殊在什么地方?提醒学生得出:特殊在角上。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
E主备人:于海备课组成员:马宝元于海王振海马辉陈玉梅侯海儒主备人:于海备课组成员:马宝元于海王振海马辉陈玉梅侯海儒武威第二十三中学集体备课教学设计主备人:于海备课组成员:马宝元于海王振海马辉陈玉梅侯海儒DCBA(A )钝角三角形(B )锐角三角形 (C )直角三角形(D )等腰三角形.7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为,则这个三角形是( )(A )等边三角形(B )钝角三角形 (C )直角三角形(D )锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金( ) (A )50元(B )600元(C )1200元(D )1500元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( )(A )12 (B )7 (C )5 (D )13(第10题)(第11题)(第14题)二、填空题11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12.在直角三角形中,斜边=2,则=______. 13.直角三角形的三边长为连续偶数,则其周长为.14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.ab c b a 2)(22+=+a a a a a5米3米ABC AB 222AB AC BC ++EABCD(第15题)(第16题)(第17题)15.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17.如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.ABCD AE BE AE BE ABDCE ABCD第18题图7cm21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
沪科版第十八章勾股定理复习课教学设计潜山县王河镇中心学校数学组:陈仁淼教学目标:1、通过复习使学生巩固勾股定理及勾股定理逆定理。
2、通过复习使学生能灵活运用勾股定理及其逆定理,解决一些实际问题。
教学过程:1叙述勾股定理:2勾股定理的使用格式:在直角三角形中,由勾股定理得:a2+b2=c2课堂练习: 一判断题.1.∆ABC 的两边AB=5,AC=12,则BC=13 ( )2.∆ ABC 的a=6,b=8,则c=10 ( )二,填空题1.在∆ AB C 中, (1)若c=10,a:b=3:4,则a= ___. b=___(2)若a=9,b=40,则c=______.2.在∆ ABC 中, C=90°,若AC=6,CB=8,则∆ABC 面积为_____,斜边为上的高为______.1.如图,在四边形ABCD 中,∠BAD =900,∠DBC = 900 , AD = 3,AB = 4,BC = 12, 求CD ;解:在Rt △ABD 中,∵∠BAD=90°,BD²=AD²+AB²=25∴BD=5在Rt △CBD 中,∵∠DBC=90°DC²=DB²+BC²=5²+12²=169b∴DC=132.已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。
(图见课件)A3、 有一块田地的形状和尺寸如图所示,试求它的面积。
错误!4、 有一块田地的形状和尺寸如图所示,∠B=∠D=90°, ∠A=60°,AB=5米,AD =4米,试求它的面积。
(图见课件)问题的延伸:1已知:如图,⊿ABC 中,∠ACB =90 ,AB = 5cm ,BC = 3 cm ,CD ⊥AB 于D求CD 的长及三角形的面积。
第一章勾股定理近年来,随着新思政课教学的深入普及,课程思政融入教学作为新课程改革的重要组成部分,受到越来越多的重视。
以数学为例,思政课程不仅要求学生具备基本的数学知识,更要求学生能够用科学的方法研究,并运用数学知识解决实际问题。
《勾股定理》复习课,从思政课融入的角度,对如何结合数学教学模式进行思政课教学融入课程进行分析。
首先,我们从《勾股定理及其证明》这一数学知识点入手,思考如何结合思政课融入教学。
勾股定理这一数学知识点,是研究数学几何的一个重要知识,可以通过判定三角形是否为直角三角形,完成计算面积,求解角平分线等等。
要将数学知识真正融入思想政治课教学,首先要求教师在讲解此知识点时,将历史、社会等内容融入课堂教学。
其次,要结合思政课教学内容,挖掘勾股定理三角形运用的可能性,体现出其实践性。
教师可以在讲解数学知识点之外,从历史背景等知识角度,介绍勾股定理的源头与发展过程,深入讲解勾股定理出现及其应用的文化史背景。
最后,要引导学生思考勾股定理的运用,以便加强理解。
教师可以利用案例分析,帮助学生理解勾股定理的应用,探讨如何利用勾股定理解决实际问题,如计算距离、求解面积等。
此外,还可以利用实验教学等方式,引导学生探究勾股定理这一数学知识点,帮助学生更好地理解其数学原理,进而加强数学知识的掌握,操作能力的培养。
以上就是我们通过课程思政融入数学教学,对勾股定理及其证明的融入的个性化分析方案。
总之,利用思政课融入数学教学,可以有效地激发学生的学习兴趣,加强学生的数学知识掌握及操作能力的培养,增强学生的实际应用能力,从而达到丰富学生的知识量,让学生们更有礼貌、更有效率,更有价值地参与社会实践。
一、学生起点分析通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难.二、教学任务分析勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用.本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.为此,本节课的教学目标是:①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用.②在回顾与思考的过程中,提高解决问题,反思问题的能力.③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量.三、教学过程设计本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理;第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节:布置作业.第一环节情境引入勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明.勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史,勾股定理的应用.目的:通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发学习探究热情.效果:从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:知识结构梳理本章知识要点及结构:(第1—6题由学生独立思考完成,小组代表展示)1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用,a b和=.c分别表示直角三角形的直角边和斜边,那么__________2c2.勾股定理各种表达式:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边也分别为,,a b c,则c=_________,b=_________,c=_________.3.勾股定理的逆定理:在△ABC中,若,,a b c三边满足___________,则△ABC为___________.4.勾股数:满足___________的三个___________,称为勾股数.5.几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题.6.直角三角形的边、角之间分别存在着什么关系?(教师引导,小组讨论、总结)从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角互余.直角三角形作为一个特殊的三角形.如果又有一个锐角是30︒,那么30︒的角所对的直角边时斜边的一半.7.举例说明,如何判断一个三角形是直角三角形.判断一个三角形是直角三角形可以从角、边两个方面去判断.(1)从定义即从角出发去判断一个三角形是直角三角形.例如:①在△ABC 中,7515B C ∠=︒∠=︒,,根据三角形的内角和定理,可得90A ∠=︒,根据定义可判断△ABC 是直角三角形.②在△ABC 中,1123A B C ∠=∠=∠,由三角形的内角和定理可知,A 30∠=︒,260B A ∠=∠=︒,390C A ∠=∠=︒,△ABC 是直角三角形.(2)从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).例如:①△ABC 的三条边分别为72524a b c ===,,,而22222262572524a c b +=+===,根据勾股定理的逆定理可知△ABC 是直角三角形,但这里要注意的是b 所对的角90B ∠=︒.②在△ABC 三条边的比为::5:12:13a b c =,△ABC 是直角三角形.8.通过回顾与思考中的问题的交流,由同学们自己建立本章的知识结构图. (小组内展示自己总结的知识框图,相互交流完善知识框图;每个小组选取一名代表,展示本组的知识框图.)三边的关系--勾股定理→历史、应用直角三角形直角三角形的判别→应用目的:复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳入直角三角形的知识体系中,把以前的零散的知识形成知识体系.通过学生相互交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中.{效果:学生有独立思考的空间,与有合作交流的舞台,动静结合,相得益彰. 第三环节:合作探究内容:探究一:利用勾股定理求边长已知直角三角形的两边长分别为3、4,求第三边长的平方.解:(1)当两直角边为3和4时,第三边长的平方为25;(2)当斜边为4,一直角边为3时,第三边长的平方为7.注意事项:因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边.探究二:利用勾股定理求图形面积:1.求出下列各图中阴影部分的面积.(1)(2)图(1)阴影部分的面积为____;(答案:1)图(2)阴影部分的面积为____;(答案:81)图(3)阴影部分的面积为____;(答案:5)2. 已知Rt △ABC 中,90C ∠=︒,若1410a b cm c cm +==,,求Rt △ABC 的面积._( 3 )2ABC 222222211S 2241()()41()41(1410)424.ab ab a b a b a b c ∆==⨯⎡⎤=+−+⎣⎦⎡⎤=+−⎣⎦=⨯−=解:探究三:利用勾股定理逆定理判定△ABC 的形状或求角度1. 在△ABC 中,A B C ∠∠∠,,的对边分别为a b c ,,,且2()()a b a b c +−=,则( ).(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形解:222a b c −=,∴222a b c =+.故选(A ).注意事项:因为常见的直角三角形表示时,一般将直角标注为C ∠,因而有同学就习惯性的认为C ∠就一定表示直角,加之对本题所给条件的分析不缜密,导致错误.该题中的条件应转化为222a b c −=,即222a b c =+,因根据这一公式进行判断.2.已知△ABC 的三边为a ,b ,c ,有下列各组条件,判定△ABC 的形状.(1)41409a b c ===,,;(2))(,,0n m m n 2c n m b n m a 2222>>=+=−=.解:(1)(2)均为直角三角形.探究四:勾股定理及逆定理的综合应用:B 港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8 n mile 的速度前进,乙船沿南偏东某个角度以每小时15 n mile 的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34 n mile ,你知道乙船是沿哪个方向航行的吗?解:甲船航行的距离为BM=8216⨯=(n mile ),乙船航行的距离为BP=15230⨯=(n mile ).∵22216301156,341156+==,∴222BM BP MP +=,∴△MBP 为直角三角形,∴90MBP ∠=︒,∴乙船是沿着南偏东30︒方向航行的.注意事项:勾股定理的使用前提是直角三角形,而本题需对三角形做出判断,判断的依据是勾定理的逆定理,其形式为“若222a b c +=,则90C ∠=︒.学生容易不先对三角形做出判断而直接应用勾股定理进行计算.目的:通过对四大问题的探究,培养同学们归纳知识的能力,并将各种数学基本思想方法渗透其中,如对数形结合思想的渗透,鼓励学生由代数表示联想到几何图形,由几何图形联想到有关代数表示,从而认识数学的内在联系.如对分类讨论的渗透,培养学生严谨的数学态度.效果:探究四综合运用勾股定理及其逆定理解决实际问题,这种贴近生活的实例,训练学生解决实际问题的能力,通过学生的解答和讨论,让学生自我解决疑难,既是对所学知识的巩固应用,又让学生体验成功的喜悦.第四环节:拓展提升内容: 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,则S 2的值是 .(答案为103)目的:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智,在我们的数学史上,好多结论的发现都是这样一个过程,都是从几个或大量的特例中发现规律,大胆猜想出结论,然后以前面的理论作为基础,证明猜想,一个伟大的成果就诞生了,掌握这种研究数学的方法,大胆创新,刻苦钻研,说不一定你就是未来的商高,第二个赵爽.效果:运用勾股定理和方程思想解决实际问题,让学生体会生活中处处皆数学,并且使新知得到了巩固,能力得到了训练,认识得到了升华.第五环节:交流小结内容:师生相互交流总结:1.本章知识要点及在学习中用到了哪些数学思想方法?2.你在学习过程中是否积极参与?是否与同伴进行了有效的合作交流?目的:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史.效果:学生畅所欲言自己的切身感受与实际收获,总结解决问题的思路与方法,并赞叹我国古代数学的成就.第六环节:布置作业1.课本《复习题》.2.思考题:一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2 m,坡角A30B90BC6,,m.当正方形DEFH运动到什么∠=︒∠=︒=位置,即当AE= m时,有222=+.DC AE BC(答案为:314.) 四、教学设计反思本节课是复习课,利用勾股定理和勾股逆定理来解决实际问题.勾股定理是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,而勾股定理逆用的作用是判定某一个三角形是否是直角三角形.针对我班学生的知识结构和心理特征,本节课的设计思路是引导学生“‘做’数学”,先由浅入深,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组织者、引导者与合作者”的教学理念.本节课围绕激趣引入,归纳知识--综合练习,应用知识—课堂小结三部分,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心.让学生自己绘制知识网络图,进一步体会本章所学知识之间的前后联系,并培养了学生这方面的能力.设计的题目既考察了对基本知识的掌握情况,又注重了综合课的特点,注重对所学知识的综合利用.设计的问题尽量与实际问题有联系,体现了数学来源于实际,又应用于生活实际,这一点符合新课标的要求.附:板书设计回顾与思考一 情境引入二 本章知识结构三边的关系--勾股定理→历史、应用直角三角形直角三角形的判别→应用。
《勾股定理》复习课教学设计
南湖中学孙沛磊
思考:通过这些题,你认为在运用勾股定理时有哪些注意点?
2.探究二:勾股定理逆定理的应用
问题1:判断以线段a 、b 、c 为边的△ABC 是不是直角三角形?若
是,并说明哪条边为斜边? (1)a=7 b=3 c=2 (2)a=3 b=4 c=5 (3)a=3 b=4 c=5 【点拨】:利用勾股定理逆定理时主要准确判断斜边 ,注意区别(2)、(3)。
问题2:三角形三边长为a ,b ,c ,且满足等式
ab c b a 222=-+)(,则此三角形是什么三角形?
【点拨】:注意等式变形,找出三边数量关系。
问题3:一个三角形三边长比为1:3:2,这个三角形是直角三
角形吗?
【点拨】:对于比例问题,可以通过设未知数方式来解决。
探究小结:通过这些题,你有哪些体会?
3.探究三:勾股定理及其逆定理综合应用 题型一:折叠问题
问题1:如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8
㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,
求CD 的长. 变式1:在矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按图所示方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长。
变式2:折痕EF 长度能求出吗?
题型小结:处理此类折叠问题,你运用了哪些方法和数学思想?
探究一、
二:
独立思考
并回答问
题,最后学
生通过练
习总结知识应用过
程的方法、
思想。
探究三: 独立思考
观察、计
算、探讨、
归纳出在
解决折叠问题、展开问题时的方法和数学思想。
探究一、二意在让学生通过观察、计算、归纳进一步理解和总结知识应用所蕴含的方法和数学思想.
探究三意在巩固提升学生综合应用勾股定理及其逆定理的能力,培养学生归类能力和数学思想。
题型二:展开问题
问题1:如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?
变式提升1:如图,长方体的长为15 cm,宽为 10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点 A爬到点B,需要爬行的最短距离是多少?
题型小结:处理展开问题,求最短路径时,你运用了哪些知识?第三环节:课堂小结
通过本节课复习,你对勾股定理又有了哪些新的体会?
第四环节:课后作业
归纳本节课知识,并反思总结。
变式提升
1中学生
讨论分析
展开的几
种情形,从
而找出最
短路径。
培养学生讨
论、合作意
识。
板书设计
勾股定理复习课一、知识结构
勾股定理勾股定理逆定理
直角三角形三边直角三角形的判定长的数量关系
后记。