勾股定理教案
- 格式:doc
- 大小:165.50 KB
- 文档页数:23
勾股定理教案(表格式)教学目标:1. 了解勾股定理的定义及其在几何学中的应用。
2. 学会使用勾股定理计算直角三角形的长度。
3. 培养学生的观察、分析和解决问题的能力。
教学重点:1. 勾股定理的定义及应用。
2. 学会使用勾股定理计算直角三角形的长度。
教学难点:1. 理解并应用勾股定理解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 直角三角形模型或图片。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍勾股定理的背景和重要性。
2. 展示直角三角形模型或图片,引导学生观察并提问:你们能发现什么规律吗?二、探索勾股定理(15分钟)1. 引导学生通过观察和实验,发现直角三角形两条直角边的平方和等于斜边的平方。
2. 学生分组讨论,总结出勾股定理的表达式:a^2 + b^2 = c^2。
三、验证勾股定理(15分钟)1. 学生使用三角板或直角三角形模型,进行实际测量和计算,验证勾股定理。
2. 学生展示验证结果,教师点评并总结。
四、应用勾股定理(15分钟)1. 教师提出实际问题,引导学生运用勾股定理解决问题。
2. 学生分组讨论并解答问题,展示解题过程和结果。
五、总结与评价(5分钟)1. 教师引导学生总结本节课的学习内容,强调勾股定理的重要性和应用。
2. 学生评价自己的学习成果,提出疑问和困惑。
教学延伸:1. 引导学生进一步探究勾股定理的证明方法。
2. 布置课后作业,巩固勾股定理的应用。
教学反思:本节课通过引导学生观察、实验、讨论和应用,让学生深入了解勾股定理的定义和应用。
在教学过程中,注意关注学生的学习情况,及时解答疑问,帮助学生克服学习难点。
通过实际问题的解决,培养学生的观察、分析和解决问题的能力。
总体来说,本节课达到了预期的教学目标。
六、实践练习(15分钟)1. 教师提供一系列有关勾股定理的练习题,让学生独立完成。
2. 学生展示解题过程和结果,教师点评并给予反馈。
七、拓展活动(15分钟)1. 学生分组,每组设计一个关于勾股定理的有趣活动,如小游戏、演示实验等。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
教案:初中数学——《勾股定理》教学目标:1. 知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2. 过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3. 情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:用面积法方法证明勾股定理。
课前准备:多媒体ppt,相关图片。
教学过程:(一)情境导入1. 多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2002年国际数学大会会标等。
通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2. 多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,但云梯底部离楼墙还有1.5米,问消防队员能否进入楼内救火?(二)新课导入1. 教师引导学生观察上述情境,提出问题:为什么消防队员无法进入楼内救火?学生通过分析,得出结论:消防队员取来的云梯长度不满足勾股定理。
2. 教师引导学生回顾勾股定理的定义,引导学生思考如何运用勾股定理解决问题。
(三)探索勾股定理1. 教师组织学生进行小组讨论,让学生尝试用勾股定理解决实际问题。
2. 教师引导学生通过观察、分析、猜想,探索勾股定理的规律。
3. 教师让学生用面积法方法证明勾股定理,引导学生动手操作,合作交流,逻辑推理。
(四)总结与应用1. 教师引导学生总结勾股定理的定义和证明方法。
2. 教师设计一些简单的实际问题,让学生运用勾股定理进行解决。
教学反思:本节课通过情境导入,激发学生的学习兴趣,引导学生回顾勾股定理的定义,探索勾股定理的规律,并用面积法方法证明勾股定理。
三、例题讲解例1:如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?学生理解勾股定理的逆定理应用四、巩固新知师巡视学生做练习后评讲1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
完成练习,指名回答板书五、归纳小结教师强调,今天,我们共同探究了利用勾股定理的逆定理来求角度、求边长以及生活中的实际问题,课下要反复思索理解。
学生梳理并理解勾股定理的逆定理解决实际问题六、布置作业课本P34第4、5题板书设计17.2 勾股定理的逆定理(二)1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题教学反思工作单位姓名课题第十九章《勾股定理》小结复习课时第15课时教学目标1.复习勾股定理和勾股定理的逆定理2.能进行相应的计算,并能在实际问题中应用3.灵活应用勾股定理及逆定理解决实际问题重点难点重点:能熟练运用勾股定理进行计算和证明。
难点:灵活应用勾股定理及逆定理解决实际问题。
教法学法归纳法教学准备多媒体课件教学步骤教师活动学生活动二次备课一、导入新课问题 1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想?学生回答问题,叙述勾股定理及其逆定理二、巩固旧知一、理清脉络、构建框架知识1:已知两边求第三边知识2:利用方程求线段长知识3:判断一个三角形是否是直角三角形学生按知识点回顾知识,点名回答问题。
第14章 勾股定理14.1 勾股定理第1课时 直角三角形的三边关系教学目标1.体验勾股定理的探索.2.会用勾股定理求直角三角形的边长.教学重难点重点:用勾股定理求直角三角形的边长. 难点:用拼图法证明勾股定理.教学过程导入新课2002年国际数学家大会在我国北京召开,投影显示本届国际数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)我国古代3000多年前有一个叫商高的人,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.画一个两直角边长分别为3和4的直角△ABC ,用刻度尺量出斜边的长,再画一个两直角边长分别为5和12的直角△ABC ,用刻度尺量出斜边的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?探究新知1.勾股定理的证明活动1:如图,让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.222(),ABCD ABCD S c S ab b a +-正方形正方形=,=从而222222(),.c ab a b c a b =+-+即=活动2:给学生如图所示的图形,利用面积证明.分析:左右两边的正方形边长相等,则两个正方形的面积相等.左边S =2214,2ab c S a b ⨯++右边=() .左边和右边的面积相等,即2214,2ab c a b ⨯++=()教学反思222.c a b +化简可得=教学说明:以上两图出示给学生,分两组交流、证明,完成后由学生代表展示.教师归纳板书:勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.求直角三角形的边长活动:出示习题:(1)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则AB =____; (2)在Rt △ABC 中,∠C =90°,AB =25,AC =20,则BC =____; (3)在Rt △ABC 中,∠C =90°,它的两边是6和8,则它的第三边长是__________.【答案】(1)13 (2)15 (3)10或教学说明:先由学生独立完成,再由学生展示,注意(3)要分类,分8为直角边长或斜边长两种情况.最后教师板书:在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长,则c a b【合作探究,解决问题】【小组讨论,师生互学】例1 如图,在Rt △ABC 中,已知∠B =90°,AB =6, BC =8,求AC .解:根据勾股定理,可得AB ²+BC ²=AC ²,所以AC10.例2 如图,Rt △ABC 的斜边AC 比直角边AB 长2 cm ,另一直角边BC 长为6 cm ,求AC 的长.解:由已知AB =AC -2,BC =6cm ,根据勾股定理,可得AB ²+BC ²=(AC -2)²+6²=AC ²,解得AC =10(cm).例3 如图,为了求出湖边两点A ,B 之间的距离,一名观测者在点C 设桩,使△ABC 恰好为直角三角形,通过测量,得到160米,BC 的长为128米,问A ,B 解:Rt △ABC 中,AC =100,BC =128, 根据勾股定理得教学反思96AB (米).答: A ,B 两点之间距离96米.课堂练习1.在△ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长. (1)已知a =2.4,b =3.2,则c =_______.(2)已知c =17,b =15,则△ABC 的面积等于_______. (3)已知∠A =45°,c =18,则a 2=______.2.直角三角形三边长是连续偶数,则这三角形的各边长分别为_______.3.△ABC 的周长为40 cm ,∠C =90°,BC ∶AC =15∶8,则它的斜边长为______.4.直角三角形的两直角边之和为14,斜边为10,则它的斜边上的高为________,两直角边分别为________.5.在Rt △ABC 中,已知两直角边长a =1,b =3,那么斜边c 的长为( ).A.2B.4C.22D.106.直角三角形的两直角边分别为5 cm ,12 cm ,则斜边上的高为( ).A.6 cmB.5 cmC.3060cm D.1313cm 参考答案1.(1)4 (2)60 (3)1622.6 8 103.17 cm4.4.8 6和85.D6.D课堂小结教师提问:这一节课我们一起学习了哪些知识和思想方法? 在学生自由发言的基础上,师生共同总结:知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=. 方法:(1) 观察——探索——猜想——验证——归纳——应用; (2)“割、补、拼、接”法.思想:(1) 特殊——一般——特殊; (2) 数形结合思想.布置作业请完成本课时对应练习!板书设计直角三角形的三边关系勾股定理直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=.教学反思。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
动态教案模板学科数学授课年级八年级学校教师姓名章课题第十八章勾股定理总课时 5 第课时 1节课题18.1 勾股定理(1)课型新授课授课时间3月19日教学三维目标知识与技能:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
过程与方法:经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。
情感、态度价值观:培养学生严谨的数学学习态度,体会勾股定理的应用价值。
教学用具教学重点勾股定理的内容及证明。
教勾股定理的证明。
S正方形=CS正方形=4ab+(a-b)方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×ab+c2右边S=(a+b)2左边和右边面积相等,即4×ab+c2=(a+b)2化简可得。
方法三:以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B 三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于.∴.∴.勾股定理的证明方法,达300余种。
请学生利用业余时间探究。
三、课堂练习:1.勾股定理的具体内容是:。
2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;⑵若D为斜边中点,则斜边中线;⑶若∠B=30°,则∠B的对边和斜边:;⑷三边之间的关系:3.△ABC的三边a、b、c,若满足b2= a2+c2,则=90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B是角。
4.根据如图所示,利用面积法证明勾股定理。
参考答案四、小结:请同学们总结下本节课里你有哪些收获?学生说出结论,教师补充。
板书设计18.1 勾股定理(1)例1例2作业布置教材第69页1、2题。
教学反对于分式的值不理解学生思维的定势是分数它是固定的值而分式的值它是变量既然是变量那么就可能出现值为零的情况的,那么这个值是如何出现的就得取定变量X的值的。
思及学情反馈在例题讲解的当中还可以扩充当a为何值时,分式的值为正?值为负这样对于学生知识一整个理解是非常的必要的学生就知道分式的值会有三大种不同的情况:值为0值为正值动态教案模板学科数学授课年级八年级学校教师姓名章课题第十八章勾股定理总课时 5 第课时 2节课题18.1 勾股定理(2)课型新授课授课时间3月20日教学三维目标知识与技能:1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。
情感、态度价值观:培养学生思维意识,发展数学理念,体会勾股定理的应用价值。
教学用具教学重点勾股定理的简单计算。
教学难点勾股定理的灵活运用教学过程师生双边活动动态调整升级一.复习引入。
复习勾股定理的文字叙述;勾股定理的符号语言及变形。
学习勾股定理重在应用。
二.讲授新课:例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。
欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,但只有一边已知,根据等腰三角形三见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2(补充)已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。
让学生知道考虑问题要全面,体会分类讨论思想。
例3(补充)已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高。
⑵求S△ABC。
分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。
欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=AB=3cm,则此题可解。
三、练习1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则线合一性质,可求AD=CD=AB=3cm,则此题可解。
c= 。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。
⑹已知等边三角形的边长为2cm,则它的高为,面积为。
2.已知:如图,在△ABC中,∠C=60°,AB=,AC=4,AD是BC边上的高,求BC的长。
3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
参考答案1.17;; 6,8; 6,8,10; 4或;,;教学三维目标知识与技能:1.会用勾股定理解决简单的实际问题。
2.树立数形结合的思想。
过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法情感、态度价值观:培养学生思维意识,发展数学理念,体会勾股定理的应用价值。
教学用具教学重点勾股定理的应用。
教学难点实际问题向数学问题的转化。
教学过程师生双边活动动态调整升级一、引入新课例:(1)求出下列直角三角形中未知的边.例1(教材P66页探究1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。
分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为二、讲授新课:例:①在解决问题时,每个直角三角形需知晓几个条件?②直角三角形中哪条边最长?(2)在长方形ABCD中,宽AB为1m,长BC为2m ,求AC长.问题(1)在长方形ABCD中AB、BC、AC大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?图1例:(3)教材第76页练习1.例:(4)如图2,一个3米长的梯子AB,斜长方形,四个角都是直角。
⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。
⑸注意给学生小结深化数学建模思想,激发数学兴趣。
例2(教材P67页探究2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。
着靠在竖直的墙AO上,这时AO的距离为2.5米.①球梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C,请同学们猜一猜,底端也将滑动0.5米吗?算一算,底端滑动的距离近似值(结果保留两位小数).图2例:(1)教材第76页练习第2题.(2)变式:以教材第76页练习第2题为背景,请同学们再设计其他方案构造直角三角形(或其他几何图形),测量池塘的长AB.(3)如图3,分别以Rt △ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S1、S2、S3之间有的关系式.三、课堂练习:1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。
2.如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是米,水平距离是米。
2题图 3题图 4题图3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
4.如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?四、小结:通过探究性的实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质,数学来源于生活,并服务于生活.板书设计18.1 勾股定理(三)例作业布置教材第70页6、7题。
教学反思及学情反馈这一课学生对通分和约分的基本步骤掌握的比较好,但约分的时候也有忘了遇到多项式要进行因式分解的,通分的时候找最简公分母找不准的。
动态教案模板学科数学授课年级八年级学校教师姓名章课题第十八章勾股定理总课时 5 第课时 4节课题18.2 勾股定理的逆定理(一)课型新授课授课时间3月22日教学三维目标知识与技能:探索并掌握直角三角形判别思想,会应用勾股逆定理解决实际问题.过程与方法:经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,掌握情理数学意识.情感、态度价值观:培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值教例2(P74探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
证明略。
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。