九年级一元二次方程综合训练
- 格式:doc
- 大小:129.50 KB
- 文档页数:15
九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A . x1=0,x2=2B . x1=0,x2=-2C . x1=x2=1D . x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )A . 2B . ﹣2C .D . ﹣3.用因式分解法解一元二次方程时,原方程可化为( )A .B .C .D .4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A . 180(1+x%)=300B . 180(1+x%)2=300C . 180(1-x%)=300D . 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是( )A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A . 该方程有两个不相等的实数根B . 该方程有两个相等的实数根C . 该方程有实数根D . 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A . y2+5y-6=0B . y2+5y+6=0C . y2-5y+6=0D . y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A . x2﹣7x+12=0B . x2+7x+12=0C . x2﹣9x+20=0D . x2+9x+20=09.设A 是方程x2+2x﹣2=0的一个实数根,则2A 2+4A +2016的值为( )A . 2016B . 2018C . 2020D . 202110.如图,△A B C 是一块锐角三角形材料,高线A H长8 C m,底边B C 长10 C m,要把它加工成一个矩形零件,使矩形D EFG的一边EF在B C 上,其余两个顶点D ,G分别在A B ,A C 上,则四边形D EFG 的最大面积为( )A . 40 C m2B . 20C m2C . 25 C m2D . 10 C m2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数A 的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知A 、B 是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△A B C 中,三边分别为A 、B 、C ,其中A =5,若关于x的方程x2+(B +2)x+6﹣B =0有两个相等的实数根,求△A B C 的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m和n,请你研究满足什么条件时,矩形B 存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A ,B 两种规格的自行车100辆,已知A 型的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。
苏科版九年级数学上册第1章《一元二次方程》综合知识点分类训练一.一元二次方程的定义1.若方程(m﹣2)x﹣(m+3)x+5=0是一元二次方程,求m的值.2.已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?二.一元二次方程的一般形式3.一元二次方程(2+x)(3x﹣4)=5的二次项系数是,一次项系数是,常数项是.4.一元二次方程a(x+1)2+b(x+1)+c=0化为一般式后为3x2+2x﹣1=0,试求a2+b2﹣c2的值的算术平方根.三.一元二次方程的解5.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2021,则一元二次方程a(x﹣1)2+bx﹣b=﹣2必有一根为()A.2019B.2020C.2021D.20226.已知a是方程x2﹣2x﹣1=0的一个根,则代数式2a2﹣4a+的值应在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间7.已知a是方程x2﹣2020x+1=0的一个根,则的值为()A.2017B.2018C.2019D.20208.已知x=为一元二次方程x2+ax+b=0的一个根,且a,b为有理数,则a=,b =.9.设m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,则m2+3m+n=.10.已知a是一元二次方程x2+3x+1=0的实数根,求代数式的值.四.解一元二次方程-直接开平方法11.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n =0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,512.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.五.解一元二次方程-配方法13.用配方法解下列方程,其中应在两端同时加上4的是()A.x2﹣2x=5B.2x2﹣4x=5C.x2+4x=5D.x2+2x=514.当x满足条件时,求出方程x2﹣2x﹣4=0的根.六.配方法的应用15.下列各式:①x2+2x+6=(x+1)2+5;②;③;④;⑤变形中,正确的有()A.①④B.①C.④D.②④16.对关于x的二次三项式x2﹣4x+9进行配方得(x+m)2+n.(1)填空:m=,n=.(2)当x为何值时,此二次三项式的值为7.七.解一元二次方程-公式法17.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2…第二步(x+)2=…第三步x+=(b2﹣4ac>0)…第四步x=…第五步(1)嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a ≠0)的求根公式是.(2)用配方法解方程:x2﹣2x﹣24=0.八.解一元二次方程-因式分解法18.解方程x2﹣x﹣2=0时,最适当的方法是()A.直接开平方法B.配方法C.公式法D.因式分解法19.对于实数m,n,先定义一种新运算“⊗”如下:m⊗n=,若x⊗(﹣2)=10,则实数x等于()A.3B.﹣4C.8D.3或820.一元二次方程x2﹣4x﹣12=0的两根分别是一次函数y=kx+b在x轴上的横坐标和y轴上的纵坐标,则这个一次函数图象与两坐标轴所围成的三角形的面积是.21.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是.22.已知三角形的两边长分别是1和2,第三边长是方程2x2﹣5x+3=0的根,求三角形的周长.23.已知y1=x2﹣9,y2=3﹣x,当x为何值时,y1=y2?九.换元法解一元二次方程24.已知实数x满足(x2﹣2x+1)2+4(x2﹣2x+1)﹣5=0,那么x2﹣2x+1的值为()A.﹣5或1B.﹣1或5C.1D.525.若(a2+b2)(a2+b2﹣3)=4,则a2+b2的值为()A.4B.﹣4C.﹣1D.4或﹣1十.根的判别式26.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②B.①②④C.①②③④D.①②③27.关于x的一元二次方程nx2﹣x+2=0有两个不相等的实数根,则n的取值范围是()A.n<且n≠0 B.n>C.﹣≤n<且n≠0 D.﹣<n≤且n≠0 28.若等腰三角形的一条边长为5,另外两条边的长为一元二次方程x2﹣7x+k=0的两个根,则k 的值为()A.10B.C.10或D.29.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②④B.①②③C.①③④D.②③④30.已知三个实数a,b,c满足ab<0,a+b+c=0,a﹣b+c>0,则下列结论成立的是()A.a>0,b2≥4ac B.a>0,b2≤4ac C.a<0,b2≥4ac D.a<0,b2≤4ac31.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.32.如图,△ABC中,∠ACB=90°,∠A=30°,BC=2,若D,E是边AB上的两个动点,F 是边AC上的一个动点,DE=,则CD+EF的最小值为()A.﹣B.3﹣C.1+D.3十一.根与系数的关系33.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.(1)求m的取值范围;(2)设α,β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来;若不存在,请说明理由.34.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?十二.一元二次方程的应用35.某初三毕业班同学之间互赠一寸相片留念,送出的相片总共2256张,如果设这个班有x个学生,则可列方程()A.B.x(x﹣1)=2256C.(x﹣1)2=2256D.x(x+1)=225636.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为()A.9人B.10人C.11人D.12人37.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?38.某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.39.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?40.某单位准备将院内一块长30m,宽20m的长方形空土,建成一个矩形花园,要求在花园中修建两条纵向和一条横向的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?答案一.一元二次方程的定义1.解:由题意,得m2﹣5m+8=2且m﹣2≠0,解得m=3,m的值是3.2.解:(1)由关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程,得或或,解得k=﹣1或k=0.故当k=﹣1或k=0时,关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程;(2)由关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程,得,解得k=1.故当k=1时,关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程.二.一元二次方程的一般形式3.解:方程(2+x)(3x﹣4)=5整理为一般式可得3x2+2x﹣13=0,∴二次项系数是3,一次项系数是2,常数项是﹣13,故3、2、﹣13.4.解:整理a(x+1)2+b(x+1)+c=0得ax2+(2a+b)x+(a+b+c)=0,则,解得,∴a2+b2﹣c2=9+16=25,∴a2+b2﹣c2的值的算术平方根是5.三.一元二次方程的解5.解:对于一元二次方程a(x﹣1)2+bx﹣b=﹣2即a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2021,所以at2+bt+2=0有一个根为t=2021,则x﹣1=2021,解得x=2022,所以一元二次方程a(x﹣1)2+bx﹣b=﹣2必有一根为x=2022.故选:D.6.解:∵a是方程x2﹣2x﹣1=0的一个根,∴a2﹣2a=1,∴2a2﹣4a+=2(a2﹣2a)+=2×1+=2+.∵4<5<9,∴2<<3.∴4<2+<5.即代数式2a2﹣4a+的值应在4和5之间.故选:A.7.解:∵a是方程x2﹣2020x+1=0的一个根,∴a2﹣2020a+1=0,即a2+1=2020a,a2=2020a﹣1,则=2020a﹣1﹣2019a+=a﹣1+=﹣1=﹣1=2019.故选:C.8.解:因为x==﹣1,代入x2+ax+b=0得(﹣1)2+(﹣1)a+b=0,则a+(﹣a+b)=2﹣6,可得方程组,解得.故2,﹣4.9.解:∵m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,∴m+n=﹣2,m2+2m=2021,则原式=m2+2m+m+n=m2+2m+(m+n)=2021﹣2=2019.故2019.10.解:∵a是一元二次方程x2+3x+1=0的实数根,∴a2+3a+1=0,∴a2+3a=﹣1,∴====﹣3.四.解一元二次方程-直接开平方法11.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.12.解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故x3=0,x4=﹣3.五.解一元二次方程-配方法13.解:A.由x2﹣2x=5得x2﹣2x+1=5+1,不符合题意;B.由2x2﹣4x=5得x2﹣2x=,所以x2﹣2x+1=+1,不符合题意;C.由x2+4x=5得x2+4x+4=5+4,符合题意;D.由x2+2x=5得x2+2x+1=5+1,不符合题意;故选:C.14.解:解不等式x+1<3x﹣3,得:x>2,解不等式3(x﹣4)<2(x﹣4),得:x<4,则不等式组的解集为2<x<4,∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,则x﹣1=±,∴x=1或x=1﹣,∵2<x<4,∴x=1.六.配方法的应用15.解:①x2+2x+6=x2+2x+1+5=(x+1)2+5,变形正确;②,变形错误;③原式=(x+)2+,变形错误;④,变形正确;⑤+,变形错误;故选:A.16.解:(1)x2﹣4x+9=(x﹣2)2+5,∴m=﹣2,n=5,故﹣2,5;(2)由题意可得,x2﹣4x+9=7,解得,x1=2+,x2=2﹣,当x为或2﹣时,此二次三项式的值为7.七.解一元二次方程-公式法17.解:(1)嘉淇的解法从第四步开始出现错误;当b2﹣4ac>0时,方程ax2+bx+c=0(a≠0)的求根公式是x=;故四;x=;(2)x2﹣2x=24,配方得:x2﹣2x+1=24+1,即(x﹣1)2=25,开方得:x﹣1=±5,解得:x1=6,x2=﹣4.八.解一元二次方程-因式分解法18.解:由于方程中一次项系数时无理数,所以,解方程x2﹣x﹣2=0时,最适当的方法是公式法,故选:C.19.解:当x≥﹣2时,x2+x﹣2=10,解得:x1=3,x2=﹣4(不合题意,舍去);当x<﹣2时,(﹣2)2+x﹣2=10,解得:x=8(不合题意,舍去);∴x=3.故选:A.20.解:解方程x2﹣4x﹣12=0得:x=6或﹣2,∵一元二次方程x2﹣4x﹣12=0的两根分别是一次函数y=kx+b在x轴上的横坐标和y轴上的纵坐标,∴这个一次函数图象与两坐标轴所围成的三角形的面积是×6×|﹣2|=6,故6.21.解:解方程x2﹣7x+12=0得:x=3或4,当腰为3时,三角形的三边为3,3,6,3+3=6,此时不符合三角形三边关系定理,此时不行;当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为4+4+6=14,故14.22.解:解方程2x2﹣5x+3=0得:x=1.5或1,当x=1.5时,三角形的三边为1,2,1.5,此时三角形的三边符合三角形三边关系定理,即三角形的周长为1+2+1.5=4.5;当x=1时,三角形的三边为1,2,1,此时三角形的三边不符合三角形三边关系定理,即三角形不存在;所以三角形的周长为4.5.23.解:x2﹣9=3﹣x,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0,x﹣3=0,x1=﹣4,x2=3,即当x为﹣4或3时,y1=y2.九.换元法解一元二次方程24.解:设y=x2﹣2x+1,则y2+4y﹣5=0.整理,得(y+5)(y﹣1)=0.解得y=﹣5(舍去)或y=1.即x2﹣2x+1的值为1.故选:C.25.解:设y=a2+b2(y≥0),则由原方程得到y(y﹣3)=4.整理,得(y﹣4)(y+1)=0.解得y=4或y=﹣1(舍去).即a2+b2的值为4.故选:A.十.根的判别式26.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:△=b2﹣4a≥0,故①正确;②方程ax2+c=0有两个不相等的实根,∴△=0﹣4ac>0,∴﹣4ac>0则方程ax2+bx+c=0的判别式△=b2﹣4a>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,∴2ax0+b=±,∴b2﹣4ac=(2ax0+b)2,故④正确.故正确的有①②④,故选:B.27.解:∵关于x的一元二次方程nx2﹣x+2=0有两个不相等的实数根,∴△=(﹣)2﹣4n×2>0且n≠0,4n+3≥0,解得﹣≤n<且n≠0,故选:C.28.解:当5为腰长时,将x=5代入原方程得25﹣7×5+k=0,解得:k=10,∴原方程为x2﹣7x+10=0,∴x1=2,x2=5,长度为2,5,5的三条边能围成三角形,∴k=10符合题意;当5为底边长时,△=(﹣7)2﹣4k=0,解得:k=,∴原方程为x2﹣7x+=0,∴x1=x2=,长度为,,5的三条边能围成三角形,∴k=符合题意;综上,k的值为10或,故选:C.29.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:△=b2﹣4ac≥0,故①正确;②方程ax2+c=0有两个不相等的实根,∴△=0﹣4ac>0,∴﹣4ac>0则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,∴2ax0+b=,∴b2﹣4ac=(2ax0+b)2,故④正确.故正确的有①②④,故选:A.30.解:设y=ax2+bx+c,∵a+b+c=0,a﹣b+c>0∴方程ax2+bx+c=0有实数根,即b2﹣4ac≥0.由题意知,a+c=﹣b,a+c>b,∴﹣b>b,即b<0,又∵ab<0,∴a>0.故选:A.31.解:(1)△ABC是等腰三角形;理由:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,所以△ABC为等腰三角形;(2)△ABC为直角三角形;理由:根据题意得△=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,所以△ABC为直角三角形;(3)∵△ABC为等边三角形,∴a=b=c,∴方程化为x2+x=0,解得x1=0,x2=﹣1.32.解:如图,过C作AB的对称点C1,连接CC1,交AB于N;过C1作C1C2∥AB,且C1C2=,过C2作C2F⊥AC于F,交AB于E,C2F的长度即为所求最小值,∵C C2∥DE,C C2=DE,∴四边形C1DEC2是平行四边形,∴C1D=C2E,又∵CC1关于AB对称,∴CD=C1D,∴CD+EF=C2F,∵∠A=30°,∠ACB=90°,∴AC=BC=2,∴CN=,AN=3,过C2作C2M⊥AB,则C2M=C1N=CN=,∴C2M∥C1N,C1C2∥MN,∴MN=C1C2=,∵∠MEC2=∠AEF,∠AFE=∠C2ME=90°,∴∠MC2E=∠A=30°,在Rt△C2ME中,ME=,C2M=1,C2E=2,∴AE=AN﹣MN﹣ME=3﹣﹣1=2﹣,∴EF=1﹣,∴C2F=2+1﹣=3﹣.故选:B.十一.根与系数的关系33.解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)存在.根据题意得α+β=﹣(2m﹣1),αβ=m2,∵α2+β2﹣αβ=6,∴(α+β)2﹣3αβ=6,即(2m﹣1)2﹣3m2=6,整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,∵m≤;∴m的值为﹣1.34.解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.十二.一元二次方程的应用35.解:若这个班有x个学生,则每名同学要送出贺卡(x﹣1)张,又因为是互送相片,所以总共送的张数应该是x(x﹣1)=2256.故选:B.36.解:设每轮传染中平均一个人传染的人数为x,则第一轮传染了x人,第二轮传染了(x+1)x人,根据题意得:1+x+(x+1)x=121,解得:x=10或x=﹣12(舍去).故选:B.37.解:(1)(45﹣30)×[80﹣(45﹣40)×2]=1050(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x元,则每天的销售量是[80﹣2(x﹣40)]件,依题意,得:(x﹣30)[80﹣2(x﹣40)]=1200,整理,得:x2﹣110x+3000=0,解得:x1=50,x2=60(不合题意,舍去).答:每件工艺品售价应为50元.38.解:(1)设A社区居民人口有x万人,则B社区有(7.5﹣x)万人,依题意得:7.5﹣x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.5×76%设m%=a,方程可化为:1.2(1+a)2+(1+a)(1+2a)=5.7化简得:32a2+54a﹣35=0解得a=0.5或a=﹣(舍)∴m=50答:m的值为50.39.解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.40.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米。
人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分) 一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- B.51-52C .-1+ D.5-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元9.若2-是方程x 2-4x +c =0的一个根,则c 的值是( )3A .1 B .3-3C .1+D .2+3310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加B .加C .减D .减1412141211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.=930B.=930x (x -1)2x (x +1)2C .x(x +1)=930 D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则+的值是( )n m m n A. B. C.或2 D.或245215215245215.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 .三、解答题(共56分)21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根;(2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根.m 214(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C)A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是(D)A .1- B.51-52C .-1+ D.5-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元9.若2-是方程x 2-4x +c =0的一个根,则c 的值是(A)3A .1 B .3-3C .1+D .2+3310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加B .加C .减D .减1412141211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.=930B.=930x (x -1)2x (x +1)2C .x(x +1)=930 D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则+的值是(D)n m m n A. B. C.或2 D.或245215215245215.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2.三、解答题(共56分)21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3,∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1,b 2-4ac =16-4×2×(-1)=24>0,x ==,-4±264-2±62即x 1=,x 2=.-2+62-2-62(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0,(x +2)[3(x +2)-(x -2)]=0,x +2=0或3(x +2)-(x -2)=0,∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根;(2)求证:不论k 取何值,该方程都有两个不相等的实数根.解:(1)将x =-1代入原方程,得1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0,解得x 1=-1,x 2=2.∴方程的另一个根为2.(2)证明:∵a=1,b =-(k +2),c =k -1,∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0.∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得x(30-3x)=72.解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根.m 214(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,则▱ABCD 的周长是多少?解:(1)∵四边形ABCD 是菱形,∴AB=AD.又∵AB,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根,m 214∴b 2-4ac =(-m)2-4(-)=(m -1)2=0.m 214∴m=1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +=0,即(x -)2=0,1412解得x 1=x 2=.12∴菱形ABCD 的边长是.12(2)把x =2代入原方程,得4-2m +-=0.解得m =.m 21452将m =代入原方程,得x 2-x +1=0,5252∴方程的另一根AD =1÷2=.12∴▱ABCD 的周长是2×(2+)=5.1225.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.(2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得8×1 000×400+5×400(a -1 000)≥5 000 000.解得a≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得(2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.。
15道九年级一元二次方程计算题1、解方程:x2—2x—1=0.2、解方程:3、解方程:x2+x-+1=0.4、解方程:5、用配方法解方程:6、解方程:3 ( x - 5 )2 = 2 ( 5- x )7、解方程:.8、9、解方程:(x -1)2 + 2x (x - 1) = 010、解方程:.11、用配方法解方程:。
12、解方程:.13、解方程:x2-6x+1=0.14、用配方法解一元二次方程:15、解方程:.参考答案一、计算题1、解:a=1,b=-2,c=-1B2-4ac=(-2)2-4*1*(-1)=8X=方程的解为x=1+ x=1-2、原方程化为∴即∴,3、解:设x2+x=y,则原方程变为y-+1=0.去分母,整理得y2+y-6=0,解这个方程,得y1=2,y2=-3.当y=2 时,x2+x=2,整理得x2+x-2=0,解这个方程,得x1=1,x2=-2.当y=-3 时,x2+x=-3,整理得x2+x+3=0,∵△=12-4×1×3=-11<0,所以方程没有实数根.经检验知原方程的根是x1=1,x2=-2.4、解:移项,得配方,得∴∴(注:此题还可用公式法,分解因式法求解,请参照给分)5、)解:移项,得x2 +5x=-2,配方,得整理,得()2=直接开平方,得=∴x1=,x2=6、解:7、解:∴或∴,8、9、解法一:∴,解法二:∵a = 3,b = 4,c = 1∴∴∴,10、解:- -两边平方化简,两边平方化简. --解之得---检验:将. 当所以原方程的解为-11、解:两边都除以2,得。
移项,得。
配方,得,。
或。
,。
12、解:方程两边同乘以,得整理得或经检验,都是原方程的根.13、解法1:x2-6x+1=0∵b2-4ac=(-6)2-4=32∴x===3±2.即x1=3+2,x2=3-2. 解法2:x2-6x+1=0(x-3)2-8=0(x-3)2=8x-3=±2即x1=3+2,x2=3-2.14、解:移项,得二次项系数化为1,得配方由此可得,15、解法一:或解法二:。
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
九年级数学一元二次方程测试题(含答案)一、选择题(每题3分)1.用配方法解方程x-2x-5=时,原方程应变形为()B.(x-1)²=62.若关于x的一元二次方程kx-2x-1=有两个不相等的实数根,则k的取值范围是()A.k>-13.关于x的方程(a-6)x-8x+6=有实数根,则整数a的最大值是()D.94.方程x-9x+18=的两个根是等腰三角形的底和腰,则这个三角形的周长为()C.155.设a,b是方程x²+x-2009=的两个实数根,则a+2a+b的值为()B.20076.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x,则可列方程()B.60.05(1+x)=63%7.如图5,在△ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x²+2x-3=的根,则ABCD的周长为()C.2+228.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm²,设金色纸边的宽为xcm,那么CB+CE满足的方程是()B.x²+65x-350=0二、填空题:(每题3分)9.一元二次方程x²=16的解是±4.10.若关于x的一元二次方程x+(k+3)x+k=的一个根是-2,则另一个根是-1.2022年3月23日,第1页共5页1.(2009年包头)解:根据韦达定理,x1+x2=m,x1x2=2m-1,所以(x1-x2)²=(x1+x2)²-4x1x2=(m²-8m+4)-4(2m-1)=m²-8m+8.答案:m²-8m+8.2.(2009年甘肃白银)解:根据定义,43=4²-3²=7,所以7x=24,x=5.答案:5.3.(2009年包头)解:设两段铁丝长度分别为x和20-x,则两个正方形的边长分别为x/4和(20-x)/4,根据均值不等式,两个正方形面积之和的最小值为2(x/4)(20-x)/4=5(x-5)²,当x=10时取得最小值,即最小值为125.答案:125.4.(2009年兰州)解:根据韦达定理,x1+x2=-6,x1x2=3,所以bc=x1x2=3,x1·x2=3/a=3/1=3.答案:3.5.(2009年甘肃白银)解:根据定义,43=1,所以1x=24,x=25.答案:25.6.(2009年广东省)解:设2x-3=t,则原方程转化为t=0,新方程为2t=3,解得t=3/2,所以x=3/4.答案:3/4.7.解方程:x-3x-1=0,移项得x=1/3.答案:1/3.8.(2009年鄂州)解:根据韦达定理,k+2±√(k²-4k)≠0,所以k²-4k>0,解得k4.又因为当k=0或k=4时,方程的两根相等,所以k∈(0,4)的范围内,方程有两个不相等的实数根。
人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分)一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是( )A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是( )A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 . 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C) A.9 B.3 C.-3 D.3或-34.方程x 2+x -1=0的一个根是(D)A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是(A)A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是(D)A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2. 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3, ∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1, b 2-4ac =16-4×2×(-1)=24>0,x =-4±264=-2±62,即x 1=-2+62,x 2=-2-62.(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0, (x +2)[3(x +2)-(x -2)]=0, x +2=0或3(x +2)-(x -2)=0, ∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根. 解:(1)将x =-1代入原方程,得 1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0, 解得x 1=-1,x 2=2. ∴方程的另一个根为2.(2)证明:∵a =1,b =-(k +2),c =k -1, ∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0. ∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得 x(30-3x)=72. 解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少? 解:(1)∵四边形ABCD 是菱形,∴AB =AD.又∵AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根,∴b 2-4ac =(-m)2-4(m 2-14)=(m -1)2=0.∴m =1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +14=0,即(x -12)2=0,解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把x =2代入原方程,得 4-2m +m 2-14=0.解得m =52.将m =52代入原方程,得x 2-52x +1=0,∴方程的另一根AD =1÷2=12.∴▱ABCD 的周长是2×(2+12)=5.25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%. (2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得 8×1 000×400+5×400(a -1 000)≥5 000 000. 解得a ≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励. 26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次). 答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得 (2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去). 答:该烘焙店生产的是第五档次的产品.。
九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟 满分:120分]一.选择题1.(2020•顺平县一模)关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( )A .0a >B .1a >-C .1a <D .1a <且0a ≠2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了20%,转型成功后产值呈现良好上升势头,四月份比一月份增长15.2%,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为( ) A .32%B .34%C .36%D .38%3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( ) A .10%B .20%C .25%D .40%4.(2019春•鲤城区校级期末)已知一元二次方程2()0(0)a x m n a ++=≠的两根分别为3-,1,则方程2(2)0(0)a x m n a +-+=≠的两根分别为( ) A .1,5B .1-,3C .3-,1D .1-,55.(2018•鞍山)若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k且0k ≠ D .14k <6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是( ) A .8%B .9%C .10%D .11%7.(2018秋•老河口市期末)关于x 的一元二次方程225320x x m m ++-+=有一根为0,则另一根等于() A .1B .2C .1或2D .5-8.(2019秋•丰南区期中)关于x 的一元二次方程2(1)410m x x ---=总有实数根,则m 的取值范围( ) A .5m 且1m ≠B .3m -且1m ≠C .3m -D .3m >-且1m ≠二.填空题9.(2020•成都)关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是 . 10.(2020•浙江自主招生)关于x 的方程22(31)220x k x k k -+++=,若等腰三角形ABC ∆一边长为6a =,另两边长b ,c 为方程两个根,则ABC ∆的周长为 . 11.(2019秋•皇姑区期末)设α、β是方程2202020x x +-=的两根,则22(20201)(20202)ααββ+-++= .12.(2020春•文登区期中)已知关于x 的一元二次方程22(21)20x k x k +++-=的两根1x 和2x ,且21121222x x x x x -+=,则k 的值是 .13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程27120x x -+=的一个根,则此三角形的周长是 .14.(2002•内江)如果m ,n 是两个不相等的实数,且满足221m m -=,221n n -=,那么代数式222441999m n n +-+= .15.(2013•锦江区模拟)已知a 是方程2201310x x -+=一个根,求22201320121a a a -++的值为 . 16.(2009春•丽水期末)已知a ,b 是方程2(2)10x m x +++=的两根,则22(1)(1)a ma b mb ++++的值为 . 三.解答题17.(2020•西城区校级三模)关于x 的一元二次方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)写出一个m 的值,使得该方程有两个不相等的实数根,并求此时方程的根. 18.(2020春•玄武区期末)解一元二次方程: (1)2210x x +-=; (2)2(3)26x x -=-.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进A 、B 两种口罩生产设备若干台,已知购买A 种口罩生产设备共花费360万元,购买B 种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元. (1)求A 、B 两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同 (1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤. (1)若将这种水果每斤的售价降低x 元,则每天的销售量是多少斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?22.(2020•师宗县一模)已知关于x 的一元二次方程:21(21)4()02x k x k -++-=. (1)求证:这个方程总有两个实数根;(2)若等腰ABC ∆的一边长4a =,另两边长b 、c 恰好是这个方程的两个实数根,求ABC ∆的周长. 23.(2020•郫都区模拟)某商店将进货价为8元/件的商品按10元/件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件. (1)请你帮店主设计一种方案,使每天的利润为700元. (2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为x 元,则可卖出(35010)x -件,但物价局限定每件商品的售价不能超过进价的120%.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?25.(2019秋•慈利县期中)如图,在矩形ABCD 中,10AB cm =,8AD cm =,点P 从点A 出发沿AB 以2/cm s 的速度向点终点B 运动,同时点Q 从点B 出发沿BC 以1/cm s 的速度向点终点C 运动,它们到达终点后停止运动.(1)几秒后,点P 、D 的距离是点P 、Q 的距离的2倍; (2)几秒后,DPQ ∆的面积是224cm .26.(2019秋•青羊区校级期中)已知:如图所示,在ABC ∆中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ ∆的面积等于24cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.答案与解析一.选择题1.(2020•顺平县一模)关于的一元二次方程有两个不相等的实数根,则的取值范围是A .B .C .D .且[解答]解:关于的一元二次方程有两个不相等的实数根, 且△,解得:且. 故选:.2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了,转型成功后产值呈现良好上升势头,四月份比一月份增长,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为 A .B .C .D .[解答]解:设一月份产值为,从三月份开始,每月的增长率为, 由题意得,解得,(不合题意,舍去)所以.故选:.3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为 A .B .C .D .[解答]解:设增长率为,根据题意得, 解得:,(舍去),答:这两年投入教育经费的年平均增长百分率是. 故选:.x 2104ax x -+=a ()0a >1a >-1a <1a <0a ≠x 2104ax x -+=0a ∴≠2214(1)4104b ac a a =-=--⨯⨯=->1a <0a ≠D 20%15.2%()32%34%36%38%a x 2(120%)(1)(115.2%)a x a-+=+10.220%x ==2 2.2x =-(115.2%) 1.2100%38%a aa +⨯-⨯≈D ()10%20%25%40%x 22500(1)3600x +=10.220%x ==2 2.2x =-20%B4.(2019春•鲤城区校级期末)已知一元二次方程的两根分别为,1,则方程的两根分别为 A .1,5B .,3C .,1D .,5[解答]解:一元二次方程的两根分别为,1,方程中或,解得:或3, 即方程的两根分别为和3,故选:.5.(2018•鞍山)若关于的一元二次方程有实数根,则的取值范围是 A .且 B .且 C .且 D . [解答]解:关于的一元二次方程有实数根,且△,解得:且.故选:.6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是 A .B .C .D .[解答]解:设平均每次下调的百分率为, 由题意,得,解得:,(舍去).答:平均每次下调的百分率为. 故选:.2()0(0)a x m n a ++=≠3-2(2)0(0)a x m n a +-+=≠()1-3-1-2()0(0)a x m n a ++=≠3-∴2(2)0(0)a x m n a +-+=≠23x -=-21x -=1x =-2(2)0(0)a x m n a +-+=≠1-B x 210kx x -+=k ()14k >0k ≠14k <0k ≠14k0k ≠14k <x 210kx x -+=0k ∴≠2(1)40k =--14k0k ≠C ()8%9%10%11%x 29000(1)7290x -=10.1x =2 1.9x =10%C7.(2018秋•老河口市期末)关于的一元二次方程有一根为0,则另一根等于A .1B .2C .1或2D .[解答]解:设方程的另一个根是, 则由根与系数的关系得:, 解得:, 故选:.8.(2019秋•丰南区期中)关于的一元二次方程总有实数根,则的取值范围A .且B .且C .D .且[解答]解:关于的一元二次方程总有实数根,且△,即,解得.的取值范围为且.故选:. 二.填空题9.(2020•成都)关于的一元二次方程有实数根,则实数的取值范围是 .[解答]解:关于的一元二次方程有实数根, △,解得:, 故答案为:.10.(2020•浙江自主招生)关于的方程,若等腰三角形一边长为,另两边长,为方程两个根,则的周长为 16或22 . [解答]解:根据题意得△,所以,则,,当时,解得,则、的长为2,而,不合题意舍去;x 225320x x m m ++-+=()5-a 05a +=-5a =-D x 2(1)410m x x ---=m ()5m 1m ≠3m -1m ≠3m -3m >-1m ≠x 2(1)410m x x ---=10m ∴-≠0164(1)(1)0m -+⨯-3m -m ∴3m -1m ≠B x 232402x x m -+-=m 72m x 232402x x m -+-=∴23(4)42()1681202m m =--⨯⨯-=-+72m72m x 22(31)220x k x k k -+++=ABC ∆6a =b c ABC ∆222(31)4(22)(1)0k k k k =+-+=-31(1)21k k x +±-=⨯11x k =+22x k =12k k +=1k =b c 226+<当时,解得,则,此时三角形的周长为; 当时,解得,则,此时三角形的周长为. 综上所述,的周长为16或22. 故答案为16或22.11.(2019秋•皇姑区期末)设、是方程的两根,则4 .[解答]解:、是方程的两根,,,.故答案为4.12.(2020春•文登区期中)已知关于的一元二次方程的两根和,且,则的值是 或 .[解答]解:,, ,,或.①如果,那么,将代入,16k +=5k =210k =661022++=26k =3k =14k +=66416++=ABC ∆αβ2202020x x +-=22(20201)(20202)ααββ+-++=αβ2202020x x +-=2202020αα∴+-=2202020ββ+-=220202αα∴+=220202ββ+=22(20201)(20202)ααββ∴+-++(21)(22)4=-+=x 22(21)20x k x k +++-=1x 2x 21121222x x x x x -+=k 2-94-21121222x x x x x -+=211212220x x x x x -+-=1121(2)(2)0x x x x ---=112(2)()0x x x --=120x ∴-=120x x -=120x -=12x =2x =22(21)20x k x k +++-=得,整理,得,解得; ②如果,则△.解得:.所以的值为或. 故答案为:或.13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程的一个根,则此三角形的周长是 14 .[解答]解:解方程得:或4,当腰为3时,三角形的三边为3,3,6,,此时不符合三角形三边关系定理,此时不行; 当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为, 故答案为:14.14.(2002•内江)如果,是两个不相等的实数,且满足,,那么代数式 2013 .[解答]解:由题意可知:,是两个不相等的实数,且满足,,所以,是两个不相等的实数根,则根据根与系数的关系可知:,又,,则242(21)20k k +++-=2440k k ++=2k =-120x x -=22(21)4(2)0k k =+--=94k =-k 2-94-2-94-27120x x -+=27120x x -+=3x =336+=44614++=m n 221m m -=221n n -=222441999m n n +-+=m n 221m m -=221n n -=m n 2210x x --=2m n +=221m m =+221n n =+222441999m n n +-+2(21)4(21)41999m n n =+++-+.故填空答案:2013.15.(2013•锦江区模拟)已知是方程一个根,求的值为 2012 . [解答]解:是方程的一个根,, ,原式.故答案为:2012.16.(2009春•丽水期末)已知,是方程的两根,则的值为 4 .[解答]解:,是方程的两根, ,,,,,,.三.解答题17.(2020•西城区校级三模)关于的一元二次方程有两个实数根.(1)求的取值范围;(2)写出一个的值,使得该方程有两个不相等的实数根,并求此时方程的根.4284419994()2005m n n m n =+++-+=++4220052013=⨯+=a 2201310x x -+=22201320121a a a -++a 2201310x x -+=2201310a a ∴-+=220131a a ∴=-∴201312013120121201311a a a a a =--+=+--+211a a +=-2013111a a -+=-20131=-2012=ab 2(2)10x m x +++=22(1)(1)a ma b mb ++++a b 2(2)10x m x +++=(2)a b m ∴+=-+1ab =2(2)10a m a +++=2(2)10b m b +++=21(2)a m a∴+=-+21(2)b m b+=-+22(1)(1)[(2)][(2)](2)(2)4414a ma b mb m a ma m b mb a b ab ∴++++=-++-++=--==⨯=x 22(21)10x m x m +++-=m m[解答]解:(1)关于的一元二次方程有两个实数根,,解得:, 即的取值范围是; (2)由(1)知:当时,方程有两个不相等的实数根, 取, 则方程为,解得:,,即当时,方程的解是,.18.(2020春•玄武区期末)解一元二次方程:(1);(2).[解答]解(1),,,,,(2),,,,,x 22(21)10x m x m +++-=2224(21)4(1)450b ac m m m ∴-=+--=+54m -m 54m -54m >-∴1m =230x x +=13x =-20x =1m =13x =-20x =2210x x +-=2(3)26x x -=-2210x x +-=221x x ∴+=22111x x ∴++=+2(1)2x ∴+=1x ∴+=11x ∴=-21x =-2(3)26x x -=-(3)2(3)0x x ∴---=(3)(32)0x x ∴---=30x ∴-=320x --=,.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进、两种口罩生产设备若干台,已知购买种口罩生产设备共花费360万元,购买种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求、两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?[解答]解:(1)设种口罩生产设备的单价为万元,则种口罩生产设备的单价为万元,依题意有, 解得,经检验,是原方程的解,且符合题意,则.答:种口罩生产设备的单价为60万元,则种口罩生产设备的单价为80万元;(2)设每盒口罩可涨价元,依题意有,解得,(舍去).故每盒口罩可涨价5元.20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?[解答]解:(1)设每次下降的百分率为,根据题意,得:,解得:(舍或,13x ∴=25x =A B A B A B A x B (140)x -360480140x x=-60x =60x =1401406080x -=-=A B m (5040)(50020)6000m m -+-=15m =210m =a 250(1)32a -=1.8a =)0.2a =答:每次下降的百分率为;(2)设每千克应涨价元,由题意,得,整理,得,解得:,,因为要尽快减少库存,所以符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低元,则每天的销售量是多少斤(用含的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?[解答]解:(1)将这种水果每斤的售价降低元,则每天的销售量是(斤;(2)根据题意得:, 解得:,,当时,销售量是;当时,销售量是(斤.每天至少售出260斤,.答:水果店需将每斤的售价降低1元.22.(2020•师宗县一模)已知关于的一元二次方程:.(1)求证:这个方程总有两个实数根;(2)若等腰的一边长,另两边长、恰好是这个方程的两个实数根,求的周长. 20%x (10)(50020)6000x x +-=215500x x -+=15x =210x =5x =x x x 100201002000.1x x +⨯=+)(42)(100200)300x x --+=112x =21x =12x =11002002002602+⨯=<1x =100200300+=)1x ∴=x 21(21)4()02x k x k -++-=ABC ∆4a =b c ABC ∆[解答](1)证明:△,无论取什么实数值,,△,无论取什么实数值,方程总有实数根;(2)解:,,, ,恰好是这个方程的两个实数根,设,,当、为腰,则,即,解得,此时三角形的周长; 当、为腰时,,此时,故此种情况不存在.综上所述,的周长为10.23.(2020•郫都区模拟)某商店将进货价为8元件的商品按10元件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件.(1)请你帮店主设计一种方案,使每天的利润为700元.(2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?[解答]解:(1)设涨价元,,解得,,此时的售价为或,答:售价为13元或15元时,每天的利润可得到700元;(2)利润为:,21(21)414()2k k =+-⨯⨯-24129k k =-+2(23)k =-k 2(23)0k -∴0∴k 21(23)2k k x +±-=121x k ∴=-22x =b c 21b k =-2c =a b 4a b ==214k -=52k =44210=++=b c 2b c ==b c a +=ABC ∆//x (108)(20020)700x x +-⨯-=13x =25x =∴10313+=10515+=22(108)(20020)2016040020(4)720x x x x x +-⨯-=-++=--+,当涨价4元时即售价为14元时,利润最大,为720元.24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为元,则可卖出件,但物价局限定每件商品的售价不能超过进价的.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?[解答]解:根据题意,得整理,得解得,因为,即售价不能超过25.2元,所以不合题意,应舍去.故,从而卖出件,答:需要卖出100件商品,每件售价是25元.25.(2019秋•慈利县期中)如图,在矩形中,,,点从点出发沿以的速度向点终点运动,同时点从点出发沿以的速度向点终点运动,它们到达终点后停止运动.(1)几秒后,点、的距离是点、的距离的2倍;(2)几秒后,的面积是.[解答]解:(1)设秒后点、的距离是点、距离的2倍,,四边形是矩形,,,,, 20a =-∴x (35010)x -120%(21)(350)400x x --=2567750x x -+=125x =231x =21120%25.2⨯=31x =25x =3501025100-⨯=ABCD 10AB cm =8AD cm =P A AB 2/cm s B Q B BC 1/cm s C P D P Q DPQ ∆224cm t P D P Q 2PD PQ ∴=ABCD 90A B ∴∠=∠=︒222PD AP AD ∴=+222PQ BP BQ =+24PD =2PQ, 解得:,;时,,答:3秒后,点、的距离是点、的距离的2倍;(2)设秒后的面积是, 则,整理得解得,答:4秒后,的面积是.26.(2019秋•青羊区校级期中)已知:如图所示,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果、分别从、同时出发,那么几秒后,的面积等于?(2)在(1)中,的面积能否等于?请说明理由.22228(2)4[(102)]t t t ∴+=-+13t =27t =7t =1020t -<3t ∴=P D P Q x DPQ ∆224cm 11182(102)(8)108024222x x x x ⨯⨯+-+-⨯=-28160x x -+=124x x ==DPQ ∆224cm ABC ∆90B ∠=︒5AB cm =7BC cm =P AAB B 1/cm s Q B BC C 2/cm s P Q A B PBQ ∆24cm PQB ∆27cm[解答]解:(1)设经过秒以后面积为,根据题意得,整理得:,解得:或(舍去).答:1秒后的面积等于;(2)仿(1)得.整理,得,因为,所以,此方程无解.所以的面积不可能等于. x PBQ ∆24cm 1(5)242x x -⨯=2540x x -+=1x =4x =PBQ ∆24cm 1(5)272x x -=2570x x -+=2425280b ac -=-<PBQ ∆27cm。
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
一元二次方程综合训练1.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.2.已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,求k的取值范围.3.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q 分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=______ cm,BQ=______cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ 的面积等于cm2?第1页(共1页)4.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为______(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.5.如图.A、B、C、D为矩形的4个顶点:AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止:点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?第1页(共1页)6.已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)经过秒时,求△PBQ的面积;(2)当t为何值时,△PBQ是直角三角形?(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.7.如图:一长为32m、宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分)余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.第1页(共1页)8.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC 的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.9.如图△ABC,∠B=90∘,AB=6,BC=8.点P从A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动,问:(1)经过几秒,△PBQ的面积等于8cm2?(2)△PBQ的面积会等于10cm2吗?若会,请求出此时的运动时间;若不会,请说明理由.第1页(共1页)10.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.第1页(共1页)1.解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.2.解:∵关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,∴△=(﹣6)2﹣4(k+3)=24﹣4k>0,解得:k<6.3.解:(1)由题意,得AP=6cm,BQ=12cm.∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12﹣6=6cm.第1页(共1页)故答案为:6、12.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12﹣x,BQ=2x,∴12﹣x=2×2x,∴x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=2PB,∴2x=2(12﹣x),x=6答6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,第1页(共1页)∴,解得;x1=10,x2=2,∵x=10时,2x>12,故舍去∴x=2.答:经过2秒△BPQ 的面积等于cm2.4.解:(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,第n个图形用的正方形的个数=(n+2)(n+3)个;故答案为:n2+5n+6或(n+2)(n+3);(2)根据题意得:n2+5n+6=506,解得n1=20,n2=﹣25(不符合题意,舍去);(3)根据题意得:n(n+1)=2(2n+3),解得n=(不符合题意,舍去),∴不存在黑瓷砖与白瓷砖块数相等的情形.5.解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,第1页(共1页)则PB=16﹣3t,BQ=6﹣2t,∵PB2+BQ2=PQ2,∴(16﹣3t)2+(6﹣2t)2=102,解得t1=,t2=.∵0<t<3,∴t1=(不合题意,舍去).答:P,Q 两点从出发经过秒时,点P,Q间的距离是10cm.6.解:(1)经过秒时,AP=cm,BQ=cm,∵△ABC是边长为3cm的等边三角形,∴AB=BC=3cm,∠B=60°,∴BP=3﹣=cm,∴△PBQ的面积=BP•BQ•sin∠B=×××=;(2)设经过t秒△PBQ是直角三角形,则AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,第1页(共1页)即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒),答:当t=1秒或t=2秒时,△PBQ是直角三角形.(3)过P作PM⊥BC于M,△BPM中,sin∠B=,∴PM=PB•sin∠B=(3﹣t),∴S△PBQ =BQ•PM=•t •(3﹣t),∴y=S△ABC﹣S△PBQ =×32×﹣×t ×(3﹣t)=t2﹣t +,∴y与t的关系式为y=t2﹣t +,假设存在某一时刻t,使得四边形APQC的面积是△ABC 面积的,则S四边形APQC =S△ABC,∴t2﹣t +=××32×,∴t2﹣3t+3=0,∵(﹣3)2﹣4×1×3<0,∴方程无解,第1页(共1页)∴无论t取何值,四边形APQC的面积都不可能是△ABC 面积的.7.解法(1):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(20﹣x)(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:20×32﹣(20+32)x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.第1页(共1页)8.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a++2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=2.第1页(共1页)9.解:(1)设经过x秒,△PBQ的面积等于8cm2.∵AP=1•x=x,BQ=2x,∴BP=AB﹣AP=6﹣x,∴S△PBQ =×BP×BQ=×(6﹣x)×2x=8,∴x2﹣6x+8=0,解得:x=2或4,即经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,△PBQ的面积等于10cm2,则S△PBQ =×(6﹣y)×2y=10,即y2﹣6y+10=0,因为△=b2﹣4ac=36﹣4×10=﹣4<0,所以△PBQ的面积不会等于10cm2.10.解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t ∴当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10∴(4分)(2)∵S△ABC =(5分)第1页(共1页)∴当t<10秒时,S△PCQ =整理得t2﹣10t+100=0无解(6分)当t>10秒时,S△PCQ =整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)∴当点P 运动秒时,S△PCQ=S△ABC(8分)(3)当点P、Q运动时,线段DE的长度不会改变.证明:过Q作QM⊥AC,交直线AC于点M易证△APE≌△QCM,∴AE=PE=CM=QM=t,∴四边形PEQM是平行四边形,且DE是对角线EM的一半.又∵EM=AC=10∴DE=5∴当点P、Q运动时,线段DE的长度不会改变.同理,当点P在点B右侧时,DE=5综上所述,当点P、Q运动时,线段DE的长度不会改变.第1页(共1页)第1页(共1页)。