第12页
第一章
1.3
高考调研
x f′(x) f(x) (-∞,x1) - x1 0 极小 值 (x1,x2) + ↘
新课标A版 ·数学 ·选修2-2
x2 0 极大 值
(x2,+∞) -
由表可知,f(x)取极大值和极小值的点各有一个. 1+b fx1=ax =-1, 2 x 1 + 1 (2)解析 由(1)可知 ax2+b fx2= 2 =1 x 2+1 ⇒
第16页
第一章
1.3
高考调研
【解析】
新课标A版 ·数学 ·选修2-2
(1)f′(x)=3x2+6ax,令 f′(x)=0,得 x=0 或 x
=-2a,且 a≠0. 当 x=0 时,f(x)=b;当 x=-2a 时,f(x)=4a3+b. y-b x-0 故直线 AB 的方程为 3 = . 4a +b-b -2a-0 由于点(1,0)在直线 AB 上,代入上式得 b=2a2. 又 f(1)=0,即 1+3a+b=0,与上式联立得 1 a =- 2, a=-1, 或 b=2 b=1. 2
第18页
第一章
1.3
高考调研
1 68 φ(-1)=0,φ(-3)=-27,φ(1)=4,
新课标A版 ·数学 ·选修2-2
68 68 故 φmin(x)=- ,从而 k 的取值范围为(-∞,- ). 27 27
第19页
第一章
1.3
高考调研
题型三
例3
新课标A版 ·数学 ·选修2-2
求单调区间
1-a (2010· 山东)已知函数 f(x)=lnx-ax+ -1(a∈R). x第 页第一章1.3
高考调研
5 5 (2)由 a=2-b>0 知 0<b<2.