单相交流电路解析
- 格式:ppt
- 大小:1.21 MB
- 文档页数:15
第八章,第九章,第十一章单相交流电路的分析9—1 并联正弦电流电路如图所示,图中电流表A 1读数为5A ,A 2为20A ,A 3为25A 。
(1)图中A 的读数是多少?(2)如果维持第一只表A 1读数不变,而把电路的频率提高一倍,再求其它表读数。
9—2 图示电路中,i s =10cos100t A ,R =10Ω,L =100mH ,C =500μF ,试求电压u R (t )、u L (t )、u C (t )、和u (t ),并画出电路的相量图。
9—3 图示电路中,u s (t )=100cos100t V ,R =10Ω,L =0.1H ,C =500μF ,试求各支路电流i R (t )、i L (t )、i C (t )、和i (t ),并画出电路相量图。
9—4 正弦电流电路如图所示,已知=10 .U /45ºV ,R =2Ω,ωL =3Ω,1/ωC =1/2,求各元件的电压、电流,并画出电路的相量图。
9—5 电路如图所示,已知Z1吸收功率P1=200W,功率因数cosφ1=0.83(容性);Z2吸收功率P2=180W,功率因数cosφ2=0.5(感性);Z3吸收功率P3=200W,功率因数cosφ3=0.7(感性),电源电压U=200V,频率f=50Hz。
求:(1)电路总电流I;(2)电路总功率因数cosφ;(3)欲使整个电路功率因数提高到0.95,应该采用什么办法?并联电容是否可以?如果可以,试求该电容C值。
9—6 电路如图所示,已知路电流R1=24Ω,ωL=18Ω,R2=40Ω,1/ωC1=30Ω,1/ωC2=50Ω,支路电流I2=1.5A,试求:(1)总电流.I和电压源电压,sU.(2)电压源提供的有功功率P、无功功率Q9—7 求图示电路当改变R而能保持电流I不变的L、C和ω之间的关系。
9—8 列写图示各电路的网孔电流方程和节点电压方程。
已知u S(t)=102cos2t V,i S(t)=2cos(2t+30º)A,R=lΩ,C=2F,L=2H。
单相交流电路概述在直流电路中,电路的参数只有电阻R 。
而在交流电路中,电路的参数除了电阻R 以外,还有电感L 和电容C 。
它们不仅对电流有影响,而且还影响了电压与电流的相位关系。
因此,研究交流电路时,在确定电路中数量关系的同时,必须考虑电流与电压的相位关系,这是交流电路与直流电路的主要区别。
本节只简单介绍纯电阻、纯电感、纯电容电路。
一、纯电阻电路纯电阻电路是只有电阻而没有电感、电容的交流电路。
如白炽灯、电烙铁、电阻炉组成的交流电路都可以近似看成是纯电阻电路,如图3—7所示。
在这种电路中对电流起阻碍作用的主要是负载电阻。
加在电阻两端的正弦交流电压为u ,在电路中产生了交流电流i ,在纯电阻电路中,龟压和电流瞬时值之间的关系,符合欧姆定律,即:/i u R =由于电阻值不随时间变化,则电流与电压的变化是一致的。
就是说,电压为最大值时,电流也同时达到最大值;电压变化到零时,电流也变化到零。
如图3—8所示。
纯电阻电路中,电流与电压的这种关系称为“同相”。
通过电阻的电流有效值为:/I U R =公式3—14是纯电阻电路的有效值。
在纯电阻电路中,电流通过电阻所做的功与直流电路的计算方法相同,即:22P UI I R U R ===二、纯电感电路纯电感电路是只有电感而没有电阻和电容的电路。
如由电匪很小的电感线圈组成的交流电路,都可近似看成是纯电感电路,如图3—9所示。
在如图3—9所示的纯电感电路中;如果线圈两端加上正弦交流电压,则通过线圈的电流i 也要按正弦规律变化。
由于线圈中电流发生变化,在线圈中就产生自感电动势,它必然阻碍线圈电流变化。
经过理论分析证明,由于线圈中自感电动势的存在,使电流达到最大值的时间,要比电压滞后90︒,即四分之一周期。
也就是说,在纯电感电路中,虽然电压和电流都按正弦规律变化,但两者不是同相的,如图3—10所示,正弦电流比线圈两端正弦电压滞后90︒,或者说,电压超前电流90︒。
理论证明,纯电感电路中线圈端电压的有效值U ,与线圈通过电流的有效值之间的关系是:L //I U L U X ω==L ω是电感线圈对角频率为叫的交流电所呈现的阻力,称为感抗,用L X 表示,即: L 2X L fL ωπ==式中 L X ——感抗(Ω);f ——频率(Hz);L ——电感(H)。
单相交流电路的研究单相交流电路是指电源产生的电能是以固定频率为周期变化的交流电,且只有一条相线和一条中性线。
这种电路在家庭、商业和工业领域中都有着广泛的应用,如家庭用电、照明、电视、空调、电动机等。
单相交流电路由三个组成部分构成,分别是电源、负载和电线。
电源是交流电发生器,其产生的电能被传输到负载中,形成功率。
电线是将电能从电源传输到负载的媒介。
在单相交流电路中,电流和电压的变化随着时间而变化,相反方向的电压和电流呈现周期性变化,即在每个周期内,电流和电压都会经历一个完整的正负半周。
周期的时间是电压和电流一个完整周期的时间长度,通常以秒为单位。
在单相交流电路中,电阻、电感和电容都会对电流的流动产生影响。
电阻是电流流经电路时所遇到的电阻碍力,电感是电流流经线圈时的磁场作用力,电容是电流在两个并联的金属板之间的电场作用力。
这些电学基础知识是理解单相交流电路的基础。
在单相交流电路中,功率的概念也非常重要。
功率是指单位时间内转化的能量或工作,它由电压和电流大小的乘积决定。
功率的单位是瓦特(W)。
在实际的单相交流电路中,人们经常需要测量电流和电压的大小,以便确定电器的功率消耗和电流是否正常。
为此,人们使用电表对电路进行测量。
在单相交流电路中,还存在着许多问题和难题,如电线过载、电源电压波动、电路失效等。
为了解决这些问题,人们开发了许多技术和方法,如使用保险丝、开关、变压器等来保护电线、调节电源电压和电容、减少电流噪音等来优化电路性能。
总之,单相交流电路是现代社会中不可或缺的基本组成部分,在家庭、商业和工业领域中都有着广泛的应用。
对于电学工程师和电气工程师来说,研究单相交流电路具有重要的理论和实践意义。
单相交流电路有关知识由交流电源、负载、联接导线和开关组成的电路称交流电路。
若交流电源中只有一个交变电动势,则称为单相交流电路。
交流电路的负载一般有电阻,电感线圈、电容器或它们的组合。
通过实验得到:电阻器对交流电流的作用与对直流电流的作用相同。
也就是说交流电流通过电阻器时,会受到阻碍作用称为电阻。
再数学式中,电阻与电流频率无关。
实验也说明了当交流电流通过电感线圈时,线圈中会产生自感电动势以阻止电流的变化,因而有一种阻碍交流电流通过的作用,称为感抗。
其大小与电流频率及线圈电感量成正比。
我们知道直流电是不能通过电容器的,通过实验说明,当交流电流通过电容器时,因极板电场的作用,也产生阻碍电流通过的作用,称作容抗。
综合以上所述,我们不难知道:当交流电流通过具有电阻、电感线圈、电容器的组合电路时,这些元件对电流的阻碍作用,统称为阻抗。
若我们用电流表和电压表来分别测量电路电流和负载端电压时,我们还可以发现:在交流电路中,电压有效值与电流有效值之比等于电路的阻抗。
我们知道,电阻无论在直流电路中,还是在交流电路中都是耗能元件,将电能转换成热能。
我们将电阻在交流电路中所消耗的电动率称为有功功率。
我们又知道,电感线圈和电容器均是储能元件。
电感线圈在有交变电流通过时,会有电磁感应现象,因而与电源进行周期性的电能——磁场能的相互转换。
当电流增大时,将电能转换为磁场能储存起来;当电流减小时,又将储存的磁场能转换成电能释放回电源。
同样,电容器在交流电路中,因不断地进行充、放电,而与电源进行周期性的电能——电场能的相互转换。
当电路中具有电阻、电感、电容的组合时。
电源既要提供电能给电阻转换为热能,又要提供电能与电感进行能量交换。
即电源提供的总功率中,既有有功功率、又有无功率。
我们称电源提供的总功率为视在功率。
单相交流调压电路工作原理
单相交流调压电路通过电子器件(如二极管、晶闸管)的导通和截止控制,改变电源所提供的交流电压的大小,以实现对负载端的电压调节。
具体工作原理如下:
1. 整流:交流调压电路首先将交流电源的电压通过二极管桥等电路改变为半波或全波的单向脉动直流信号。
当交流电压为正向时,二极管处于导通状态,电流经过;当交流电压为反向时,二极管处于截止状态,电流不通过。
2. 滤波:由于整流后的脉动直流信号仍然含有较大的纹波,因此需要通过电容器等滤波元件,去除纹波成分,使直流电压更为稳定。
3. 调压:在滤波后得到的稳定直流电压基础上,通过调节电子器件(如可控硅)的导通时间,改变电路中电流的流动,进而改变负载端的电压大小。
例如,当电子器件导通时间较长时,电路中电流流过的时间增加,负载端的电压也会增加。
4. 反馈控制:为了实现在不同负载下仍能维持稳定的输出电压,通常需要设置反馈控制回路。
该回路根据负载端的电压变化,自动调整电子器件的导通时间,使得输出电压稳定在设定值。
单相交流调压电路工作原理的关键是通过整流、滤波、调压和反馈控制等环节实现对交流电压的调节和稳定输出。
这样可以满足不同负载的电压需求,应用于各种电力电子设备和电路中。
1.单相交流调压电路(阻-感性负载)1.1单相交流调压电路电路结构(阻-感性负载)单相交流调压电路,它用两只反并联的普通晶闸管或一只双向晶闸管与负载电阻R电感L串联组成主电路。
单相交流调压电路(阻-感性负载)电路图如图1所示。
图1.单相交流调压电路(阻-感性负载)电路图1.2单相交流调压电路工作原理(阻-感性负载)当电源电压U2在正半周时,晶闸管VT1承受正向电压,但是没有触发脉冲晶闸管VT1没有导通,在α时刻来了一个触发脉冲,晶闸管VT1导通,晶闸管VT2在电源电压是正半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT1关断。
当电源电压U2在负半周时,晶闸管VT2承受正向电压,但是没有触发脉冲晶闸管VT2没有导通,在π+α时刻来了一个触发脉冲,晶闸管VT2导通,晶闸管VT1在电源电压是负半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT2关断。
1.3单相交流调压电路仿真模型(阻-感性负载)单相交流调压电路(阻-感性负载)仿真电路图如图2所示:图2.单相交流调压电路(阻-感性负载)仿真电路图电源参数,频率50hz,电压100v,如图3图3.单相交流调压电路(阻-感性负载)电源参数VT1脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4.单相交流调压电路(阻-感性负载)脉冲参数设置VT2脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟(α+π)/360*0.02,如图5图5.单相交流调压电路(阻-感性负载)脉冲参数设置1.4单相交流调压电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
单相交流电路知识讲义什么是单相交流电路单相交流电路是指由单相交流电源供电的电路。
在单相交流电路中,电流和电压的方向是随时间变化的,呈现出正弦波形。
单相交流电路的元件单相交流电路由以下几个基本元件构成:1.电源:单相交流电路的电源一般为交流发电机,它产生的电压呈正弦波形,频率通常为50Hz或60Hz。
2.电阻:电阻是电流通过时产生的阻碍,用来消耗电能。
电阻的阻值单位为欧姆(Ω)。
3.电感:电感是由线圈构成的元件,当电流通过时,会产生磁场。
电感的单位为亨利(H)。
4.电容:电容是由两个导体之间隔着绝缘介质构成的元件,在电压变化时,能存储电能。
电容的单位为法拉(F)。
单相交流电路的基本特性1.相位差:在单相交流电路中,电流和电压的波形是正弦波,它们之间存在一个相位差。
相位差的大小决定了电路中电流和电压之间的关系。
2.电压和电流的大小:在单相交流电路中,电流和电压的大小是通过欧姆定律来计算的。
欧姆定律表示为U=IR,其中U代表电压,I代表电流,R代表电阻的阻值。
3.电能和功率:在单相交流电路中,电能是电压和电流的乘积,表示为P=UI。
功率表示为电能在单位时间内的转化速率,单位为瓦特(W)。
单相交流电路中的常见问题1.电阻、电感和电容的串联和并联:在单相交流电路中,电阻、电感和电容可以通过串联和并联的方式连接到电路中。
串联和并联的方式会改变电路中电阻、电感和电容的等效阻抗和等效电容。
2.交流电路的频率:单相交流电路的频率通常为50Hz或60Hz,这是交流发电机产生电压的频率。
频率的不同会影响到电路中电流和电压的波形和大小。
单相交流电路的应用单相交流电路广泛应用于家庭、商业和工业领域。
以下是单相交流电路的一些常见应用:1.家庭用电:家庭中的电灯、电视、冰箱、洗衣机等家电都是通过单相交流电路供电的。
2.商业用电:商场、办公楼中的照明、空调系统、电子设备等都需要通过单相交流电路供电。
3.工业用电:工厂中的机械设备、生产线都需要使用单相交流电路进行供电。
单相交流电路研究报告本报告旨在研究单相交流电路的特性和性能。
单相交流电路是一种电力系统中常见的电路形式,其基本组成包括电源、负载和连接这两者的导线。
在本报告中,我们将探讨单相交流电路的工作原理、电流和电压的关系、功率计算等方面。
首先,让我们来了解一下单相交流电路的工作原理。
单相交流电路通过交流电源提供电流,而这个电流是不断变化的。
交流电源的电压和电流以正弦波的形式波动,其频率一般为50Hz或60Hz。
在单相交流电路中,电压和电流的波动是不同相位的。
这意味着电压强度和电流强度不会同时达到峰值。
电压和电流的关系可以用正弦函数来描述,其幅值和相位差决定了电路的特性。
其次,让我们来研究电流和电压的关系。
在单相交流电路中,电流和电压是相互关联的。
根据欧姆定律,电压和电流之间的关系可以用以下公式表示:V = I * R,其中V表示电压,I表示电流,R表示电阻。
由于交流电路中电压和电流都是随时间变化的,所以在计算电阻时需要考虑频率和相位差。
最后,让我们来探讨功率计算在单相交流电路中的应用。
功率是衡量电路性能的重要指标。
在单相交流电路中,功率可以分为有功功率和无功功率。
有功功率代表了电路中实际消耗的功率,可以用以下公式计算:P = V * I * cos(θ),其中P表示有功功率,V表示电压,I表示电流,θ表示电压和电流之间的相位差。
无功功率则表示电路中产生的电磁场能量,无法直接转化为有用的功率。
有功功率和无功功率的综合即为视在功率,可以用以下公式计算:S = V * I。
综上所述,本报告深入研究了单相交流电路的特性和性能,包括工作原理、电流和电压的关系、功率计算等方面。
通过对单相交流电路的研究,我们可以更好地理解其工作原理和应用,为电力系统的设计和分析提供指导意义。
单相交流调压电路工作原理单相交流调压电路是一种常见的电子电路,它可以将交流电源转换为稳定的直流电压输出。
在我们日常生活和工业生产中,许多设备都需要稳定的直流电源来保证其正常运行,而单相交流调压电路正是为了满足这一需求而设计的。
在本文中,我们将深入探讨单相交流调压电路的工作原理,希望能够帮助读者更好地理解这一电路的工作原理和应用。
首先,让我们来了解一下单相交流调压电路的基本组成。
单相交流调压电路通常由变压器、整流器、滤波器和稳压器等部分组成。
其中,变压器用于将输入的交流电压进行变压,整流器则将变压后的交流电压转换为脉动的直流电压,滤波器用于平滑这一脉动的直流电压,稳压器则用于将输出的直流电压稳定在一个特定的数值。
这些组成部分相互配合,共同完成了单相交流调压电路的工作。
接下来,我们将详细介绍单相交流调压电路各部分的工作原理。
首先是变压器,变压器通过电磁感应原理将输入的交流电压进行变压,从而得到所需要的输出电压。
接着是整流器,整流器利用二极管等元件将交流电压转换为脉动的直流电压,这一过程称为整流。
然后是滤波器,滤波器通过电容器等元件对脉动的直流电压进行滤波,使其变得更加平稳。
最后是稳压器,稳压器通过调节电阻或其他元件的电阻来维持输出电压在一个稳定的数值,从而保证稳定的直流电压输出。
在实际应用中,单相交流调压电路具有许多优点。
首先,它可以将输入的交流电压转换为稳定的直流电压输出,满足了许多设备对稳定电源的需求。
其次,单相交流调压电路结构简单,成本较低,易于制造和维护。
此外,单相交流调压电路还具有较高的效率和稳定性,能够在各种环境下可靠地工作。
总的来说,单相交流调压电路是一种常见且重要的电子电路,它在我们的日常生活和工业生产中发挥着重要作用。
通过深入了解单相交流调压电路的工作原理,我们可以更好地应用和维护这一电路,从而为我们的生活和工作带来便利和效益。
希望本文能够帮助读者更好地理解单相交流调压电路,同时也欢迎大家对这一话题进行更深入的探讨和研究。