流体流动02-(静力学方程式及应用+连续性方程)
- 格式:ppt
- 大小:568.50 KB
- 文档页数:38
流体力学的基本方程式流体力学是研究流体力学原理和现象的一门学科。
它主要研究流体的运动和变形规律,包括速度、压力、密度和温度等参数的分布及其相互关系。
流体力学的基本方程式包括连续性方程、动量方程和能量方程。
这些方程式用来描述流体的性质和运动,对于解决流体力学问题至关重要。
下面将逐一介绍这些方程式及其应用。
1. 连续性方程连续性方程描述了流体的质量守恒规律。
它基于质量守恒原理,即在流体中任意一点的质量净流入/流出率等于该点区域内质量的减少率。
连续性方程的数学表达式是:∂ρ/∂t + ∇•(ρV) = 0。
其中,ρ是流体的密度,t是时间,V是流体的流速矢量,∇•表示散度运算符。
连续性方程的应用范围广泛,例如用于描述气象学中的气流动力学、河流的水量和水质传输等。
2. 动量方程动量方程描述了流体的运动规律。
它基于牛顿第二定律,即流体的运动是由外力和内力共同作用的结果。
动量方程的数学表达式是:ρ(∂V/∂t + V•∇V) = -∇P + ∇•τ + ρg。
其中,P是压力,τ是应力张量,g是重力加速度。
动量方程是解决流体流动问题的关键方程,可以用于模拟气象学中的风场、水力学中的水流、航空航天中的气体流动等。
3. 能量方程能量方程描述了流体的能量转换和传递规律。
它基于能量守恒原理,即在流体中任意一点的能量净流入/流出率等于该点区域内能量的减少率。
能量方程的数学表达式是:ρCv(∂T/∂t + V•∇T) = ∇•(k∇T) + Q - P(∇•V) + ρg•V。
其中,Cv是比热容,T是温度,k是热传导系数,Q是体积热源项。
能量方程可用于模拟热传导、对流和辐射现象,例如地下水温场、燃烧室的工作原理等。
流体力学的基本方程式是解决各种流体流动问题的基础,通过对这些方程式的应用,可以揭示流体的行为和性质,为实际工程和科学研究提供指导。
在实际应用中,还可以结合数值模拟和试验数据,进一步分析和预测流体力学问题的解,为工程决策和科学研究提供依据。
第一章流体流动液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小。
流体流动的原理及其流动规律主要应用于这几个方面:1、流体的输送;2、压强、流速和流量的测量;3、为强化设备提供适宜的流动条件。
在研究流体流动时,常将流体视为由无数分子集团所组成的连续介质。
第一节流体静力学基本方程式1-1-1 流体的密度单位体积流体具有的质量称为流体的密度,其表达式为:对于一定质量的理想气体:某状态下理想气体的密度可按下式进行计算:空气平均分子量的计算:M=32×0.21+28×0.78+40×0.01=28.9629 (g/mol)1-1-2 流体的静压强法定单位制中,压强的单位是Pa,称为帕斯卡。
1atm 1.033kgf/cm2760mmHg 10.33mH2O 1.0133bar 1.0133×105 Pa工程上常将1kgf/cm2近似作为1个大气压,称为1工程大气压。
1at1kgf/cm2735.6mmHg10mH2O 0.9807bar9.807×105 PaP(表)=P(绝)-P(大)P(真)=P(大)-P(绝)=-P(表)1-1-3 流体静力学基本方程式描述静止流体内部压力(压强)变化规律的数学表达式称为流体静力学基本方程式。
对于不可压缩流体,常数;静止、连续的同一液体内,处于同一水平面上各点的压强相等(连通器)。
压强差的大小可用一定高度的液体柱表示(必需标注为何种液体)。
1-1-4 流体静力学基本方程式的应用一、压强与压强差的测量以流体静力学基本方程式为依据的测压仪器统称为液柱压差计,可用来测量流体的压强或压强差。
1、U型管压差计2、倾斜液柱压差计(斜管压差计)3、微差压差计二、液位的测量三、液封高度的计算第二节流体在管内流动反映流体流动规律的有连续性方程式与柏努利方程式。
1-2-1 流量与流速单位时间内流过管道任一截面的流体量,称为流量。
第二讲流体静力学基本方程及其应用【学习要求】1.理解流体静力学方程的意义;2.掌握流体静力学方程的应用。
【预习内容】1.在均质流体中,流体所具有的与其所占有的之比称为。
任何流体的密度都随它的和而变化,但对液体的密度影响很小,可忽略,故常称液体为的流体。
2.流体静压力的两个重要特性分别是:(1);(2)。
3.1atm = mmHg = Pa = mH2O【学习内容】一、流体静力学基本方程式1.流体静力学基本方程式的形式p2 = p1+ ρ ( z1—z2 )g 或p2 = p1+ hρg流体静力学方程表明:在重力作用下静止液体内部的变化规律。
即在液体内部任一点的流体静压力等于。
2.流体静力学基本方程式的意义流体静力学方程表明:(1)当作用于流体面上方的压强有变化时;(2)当流体面上方的压强一定时,静止流体内部任一点压强的大小与流体本身的和有关,因此在的的同一液体处,处在都相等。
二、流体静力学基本方程式的应用1.流体进压强的测量(1)U形管压差计①U形管压差计由、及管内指示液组成。
②指示液要与被测流体不,不起,其密度要,通常采用的指示液有、、及等。
③U形管压差计可用来测量压强差,也可以用来测量或。
【典型例题】例1用U形管测量管道中1、2两点的压强差。
已知管内流体是水,指示液是密度为1595 kg/m3的CCl4,压差计读数为40cm,求压强差(p1– p2)。
若管道中的流体是密度为2.5kg/m3的气体,指示液仍为CCl4,U形管读数仍为40cm,则管道中1、2两点的压强差是多少Pa?【例2】某蒸汽锅炉用本题附图中串联的汞-水U形管压差计以测量液面上方的蒸气压。
已知汞液面与基准面的垂直距离分别为h1 = 2.3 m,h2 = 1.2 m,h3 = 2.5 m,h4 = 1.4m,两U形管间的连接管内充满了水。
锅炉中水面与基准面的垂直距离h5 = 3.0m,大气压强p a = 99kPa。
试求锅炉上方水蒸汽的压强p0为若干(Pa)?【随堂练习】1.大气压强为750mmHg时,水面下20m深处水的绝对压强为多少Pa?2.水平导管上的两点接一盛有水银的U形管压差计(如图所示),压差计读数为26mmHg。
化工原理期末复习重点第1章 流体流动1.1标准大气压(atm)=1.013×105Pa=1.033kgf/cm 2=10.33m H 2O=760mm Hg 1(at)=1kgf/cm 2 =9.81×104Pa 表压=绝对压力-大气压力 真空度=大气压力-绝对压力=-表压2.静力学基本方程式 2a p p gh ρ=+(1)当液面上方的压力一定时,在静止液体内任一点压力的大小,与液体本身的密度和该点距液面的深度有关。
因此,在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。
压力相等的水平面,称为等压面。
(2)当液面的上方压力p a 有变化时,必将引起液体内部各点压力发生同样大小的变化。
3. q v :体积流量 m 3/s m 3/h q m :质量流量 kg/s kg/h u:流速(平均速度) m/sm v q q ρ=22//44V V m q q q u m s A d d ρππ===4.流体在管道中的流动状态可分为两种类型。
(1)层流:若其质点始终沿着与管轴平行的方向作直线运动,质点之间互相不混合,充满整个管的流体就如一层一层的同心圆筒在平行地流动,这种流动状态称为层流或滞流。
(2)湍流:当流体流速增大时,若有色液体与水迅速混合,则表明流体质点除了沿着管道向前流动外,各质点还做剧烈的径向脉动,这种流动状态称为湍流或絮流。
(3)区别:有无径向脉动。
5.雷诺数Re du ρμ=Re≤2000 流动类型为层流 Re ≥4000 流动类型为湍流2000<Re<4000 流动类型不稳定,可能是层流,也可能是湍流,或者两者交替出现,与外界干扰情况有关。
这一范围称为过渡区。
6.(1)流体在圆管中层流时,其平均速度为最大速度的一半,max 1u =。
(2)在靠近管壁的区域,仍有一极薄的流体作层流流动,称这一极薄流体层为层流内层或层流底层。
流体的湍流程度越大,层流底层越薄。
流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。
流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。
本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。
一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。
它表明流体在运动过程中,质量的流入等于流出。
连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。
二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。
根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。
三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。
根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。
四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。
流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。
综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。
这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。
通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。
在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。
数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。
流体流动–––基本概念与基本原理一、流体静力学基本方程式)(2112z z g p p -+=ρ或 gh p p ρ+=0注意:1、应用条件:静止的连通着的同一种连续的流体。
2、压强的表示方法:绝压—大气压=表压 表压常由压强表来测量;大气压—绝压=真空度 真空度常由真空表来测量。
3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm 2=1.033at4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:gR p p A )(21ρρ-=-处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体。
二、定态流动系统的连续性方程式––––物料衡算式常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ 21221221///,d d A A u u A ===圆形管中流动常数ρ三、定态流动的柏努利方程式––––能量衡算式1kg 流体:2211221222f p u p u gZ We gZ h ρρ+++=+++∑ [J/kg] 讨论点:1、流体的流动满足连续性假设。
2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp /p 1<20%,仍可用上式,且ρ=ρm 。
4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。
5、流体密度ρ的计算:理想气体ρ=p M/R T 混合气体 vn n v v m x x x ρρρρ+++= 2211混合液体 n wn w m w m x x x ρρρρ+++= 2211上式中:vi x ––––体积分率;wi x ––––质量分率。
6、g z ,u 2/2,p /ρ三项表示流体本身具有的能量,即位能、动能和静压能。
∑h f 为流经系统的能量损失。
W e 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。