SPSS相关分析
- 格式:ppt
- 大小:1.45 MB
- 文档页数:29
第10章相关分析 (225)1 双变量相关分析 (225)1.1 双变量相关分析的数据特征 (225)1.2 皮尔逊相关系数 (225)1.3 肯德尔相关系数 (228)1.4 例题3 (230)2 偏相关关系 (232)2.1 偏相关关系 (232)2.2 例题 (232)3 距离相关分析 (234)3.1 特征 (234)3.2 主要参数 (235)3.3 例题 (235)3.4 实例介绍 (237)第10章相关分析相关分析是研究变量之间关系密切程度的一种统计方法,包括双变量相关分析、偏相关分析和距离相关分析。
1 双变量相关分析1.1 双变量相关分析的数据特征当某一个事物存在着多个变量时,而各个变量之间呈数量关系时,可以用双变量相关分析来研究,并做出统计学推断。
双变量相关分析可以输出两两变量之间的相关系数,相关系数的种类有皮尔逊相关系数、肯德尔相关系数、斯皮尔曼等级相关系数等。
1.2 皮尔逊相关系数X和Y有线性函数关系,两变量间的相关系数是+1~-1,相关系数没有单位。
1.2.1 例题133名产妇进行产前检查,测定X1-X6六项指标,试计算X1-X4的皮尔逊相关系数。
1.2.2 SPSS过程Data,analyze,correlate,打开bivariate对话框,选择x1-x4→variables,选择pearson 相关系数,two-tail,flag significant correlations,打开options对话框,means and standard deviations,exclude case pairwirs,continue,ok.two-tail,双尾检验;Flag significant correlations:用星号显示有显著性相关的相关系数;Exclude case pairwirs:剔除有缺失值的配对变量;Cross-product deviations and covarances:显示每一对变量的离均差交叉积与协方差。
第8章SPSS的相关分析学习目标:1.明确相关关系的含义以及相关分析的主要目标。
2.掌握散点图的含义,熟练掌握绘制散点图的具体操作。
3.理解简单相关系数、Spearman相关系数、Kendall相关系数的基本原理,熟练掌握计算各种相关系数的具体操作,能够读懂分析结果。
4.理解偏相关系分析的主要目标以及与相关分析之间的关系,熟练掌握偏相关分析的具体操作,能够读懂分析结果。
8.1 相关分析相关分析是分析客观事物之间关系的数量分析方法,明确客观事物之间有怎样的关系对理解和运用相关分析是极为重要的。
客观事物之间的关系大致可归纳为两大类关系,它们是函数关系和统计关系。
相关分析是用来分析事物之间统计关系的方法。
所谓函数关系指的是两事物之间的一种一一对应的关系,即荡一个变量x取一定值时,另一变量y可以依确定的函数取唯一确定的值。
例如,商品的销售额与销售量之间的关系,在单价确定时,给出销售量可以唯一地确定出销售额,销售额与销售量之间是一一对应的关系,且这个关系可以被y=Ρx(y表示销售额,Ρ表示单价,x表示销售量)这个数学函数精确地描述出来。
客观世界中这样的函数关系有很多,如圆面积和圆半径、出租车费和行程公里数之间的关系等。
另一类普遍存在的关系是统计关系。
统计关系指的是两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。
例如,家庭收入和支出、子女身高和父母身高之间的关系等。
这些事物之间存在一定的关系,但这些关系却不能像函数关系那样可用一个确定的数字函数描述,且当一个变量x取一定值时,另一变量y的值可能有若干个。
统计关系可再进一步划分为线性相关和非线性相关关系。
线性相关又可分为正线性相关和负线性相关。
正线性相关关系指两个变量线性的相随变动方向相同,而负线性相关关系指两个变量线性的相随变动方向相反。
事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强,有的关系弱,程度各有差异。
相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS 做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以。
相关系数有一些需要注意的地方:1、两变量之间存在相关,仅意味着存在关联,并不意味着因果关系。
2、相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3、相关系数大小容易受到数据取值区间大小和数据个数大小的影响。
4、相关系数也需要进行检验确定其是否有统计学意义相关系数的假设检验中H0:相关系数=0,变量间没有相关性H1:相关系数≠0,变量间有相关性相关系数很多,我们一般根据变量的类型进行选择,我们知道变量类型由低级到高级可以分为定类、定序、定距、定比四种类型,而变量的数据类型则可以分为连续型或者离散型,注意不要混淆一、定距、定比变量,基本上也就是连续变量一般使用pearson相关系数,也称为积差相关系数,是一种线性相关系数,使用最为广泛,适用条件是两变量需要为线性关系,并且都来自正态分布总体,且要求成对出现二、定序、定距、定比变量一般使用spearman等级相关系数也称为秩相关系数,该系数利用了变量的次序信息,而且对原始数据没有过多要求,因此比pearson相关系数使用范围更广,它利用两变量的秩次大小作为分析依据,也可以认为是基于秩次的pearson相关系数,当数据不符合pearson相关系数的要求时,可以选择使用spearman相关系数,但是如果是定距或定比变量,还是建议用pearson相关系数,spearman 相关系数的效能略低。
三、只限定序变量1.Gamma相关系数2.Kendall等级相关系数,分为τ-a,τ-b,τ-c三种3.Somer's D相关系数四、定类变量定类变量的相关性大都是根据卡方值衍生而来1、person卡方实际上也就是卡方检验2.列联系数3.φ-Phi系数4.Cramer's V系数mbda(λ)系数6.Goodman and Kruskal的Tau-y系数五、二分类变量1.相对危险度RR值2.优势比OR值=========================================================熟悉了各种相关系数的情况之后,我们来看一下在SPSS中的操作1.分析—描述性统计—交叉表此过程一般用来分析列联表的,由于数据的组成大多是列联表形式,因此该过程包含了很多种相关系数2.分析—相关—双变量此分析为简单相关分析,是最常用的相关分析。
SPSS相关分析实例操作步骤-SPSS做相关分析SPSS(Statistical Product and Service Solutions)是目前在工业、商业、学术研究等领域中广泛应用的统计学软件包之一。
Correlation是SPSS的一个功能模块,可以用于分析两个或多个变量之间的关系。
下面是SPSS进行相关分析的具体步骤:1. 打开SPSS软件,选择“变量视图”(Variable View),输入相关的变量名,包括数字型变量和分类变量。
2. 进入“数据视图”(Data View),输入数据,并保存数据集。
3. 打开菜单栏中的“分析”(Analyze),选择“相关”(Correlate),再选择“双变量”(Bivariate)。
4. 在双变量窗口中,选择包含需要分析的变量的变量名,并将其移至右侧窗口中的变量框(Variables)。
5. 如果需要控制其他变量的影响,可以选择“控制变量”(Options)。
6. 点击“确定”(OK)按钮后,SPSS将输出结果,并将其显示在输出窗口中。
相关系数(Correlation Coefficient)介于-1和1之间,可以用来衡量两个变量之间的线性关系的强度。
7. 如果需要对结果进行图形化展示,可以选择“图”(Plots),并选择适当的图形类型。
需要注意的是,进行相关分析时需要确保变量之间存在线性关系。
如果变量之间存在非线性关系,建议使用其他统计方法进行分析。
同时,SPSS进行相关分析的结果只能描述变量之间的关系,不能用于说明因果关系。
以上是SPSS做相关分析的具体步骤,希望能对大家进行SPSS 数据分析有所帮助。
spss对数据进行相关性分析实验报告一、实验目的与背景在统计学的研究中,相关性分析是一种常见的分析方法,用于研究两个或多个变量之间的关联程度。
本实验旨在使用SPSS软件对收集到的数据进行相关性分析,并探索变量之间的关系。
二、实验过程1. 数据收集:根据研究目的,我们收集了一份包含多个变量的数据集。
其中,变量包括A、B、C等。
2. 数据准备:在进行相关性分析之前,我们需要对数据进行准备。
首先,我们载入数据集到SPSS软件中。
然后,对于缺失数据,我们根据需要采取相应的填补或删除策略。
接着,我们进行数据的清洗和整理,以确保数据的准确性和一致性。
3. 相关性分析:使用SPSS软件,我们可以轻松地进行相关性分析。
在SPSS的分析菜单中,选择相关性分析功能,并设置相应的参数。
我们将选择Pearson相关系数,该系数用于衡量两个变量之间的线性相关关系。
此外,还可以选择其他类型的相关系数,如Spearman相关系数,用于非线性关系的探索。
设置参数后,我们点击“运行”按钮,即可得到相关性分析的结果。
4. 结果解读:SPSS将为我们提供一份详细的结果报告。
我们可以看到每对变量之间的相关系数及其显著性水平。
如果相关系数接近1或-1,并且P值低于显著性水平(通常为0.05),则可以得出两个变量之间存在显著的线性相关关系的结论。
此外,我们还可以通过散点图、线性回归等方法进一步分析相关性结果。
5. 结论与讨论:根据相关性分析的结果,我们可以得出结论并进行讨论。
如果发现两个变量之间存在显著的相关关系,我们可以进一步探究其原因和意义。
同时,我们还可以提出假设并设计更深入的实验,以验证和解释这些相关性。
三、结果与讨论根据我们的研究目的和数据集,通过SPSS软件进行的相关性分析显示了一些有意义的结果。
我们发现变量A与变量B之间存在显著的正相关关系(Pearson相关系数为0.7,P<0.05)。
这表明随着A的增加,B也会相应增加。
SPSS-相关分析相关分析(⼆元定距变量的相关分析、⼆元定序变量的相关分析、偏相关分析和距离相关分析)定义:衡量事物之间,或称变量之间线性关系相关程度的强弱并⽤适当的统计指标表⽰出来,这个过程就是相关分析变量之间的关系归纳起来可以分为两种类型,即函数关系和统计关系。
相关分析的⽅法较多,⽐较直接和常⽤的⼀种是绘制散点图。
图形虽然能够直观展现变量之间的相关关系,但不很精确。
为了能够更加准确地描述变量之间的线性相关程度,可以通过计算相关系数来进⾏相关分析总体相关系数,记为ρ;样本相关系数,记为 r。
统计学中,⼀般⽤样本相关系数 r 来推断总体相关系数相关系数的取值范围在1和+1之间,即1≤r≤+1若0<r≤1,表明变量之间存在正相关关系,即两个变量的相随变动⽅向相同;若-1≤r<0,表明变量之间存在负相关关系,即两个变量的相随变动⽅向相反;当|r| =1时,其中⼀个变量的取值完全取决于另⼀个变量,两者即为函数关系;若 r= +1,表明变量之间完全正相关;若 r= -1,表明变量之间完全负相关。
当r= 0时,说明变量之间不存在线性相关关系,但这并不排除变量之间存在其他⾮线性关系的可能。
根据经验可将相关程度分为以下⼏种情况:若r≥0.8 时,视为⾼度相关若0.5≤r<0.8 时,视为中度相关当0.3≤r<0.5 时,视为低度相关当 r<0.3 时,说明变量之间的相关程度极弱,可视为不相关⼆元变量的相关分析是指通过计算变量间两两相关的相关系数,对两个或两个以上变量之间两两相关的程度进⾏分析。
1.⼆元定距变量的相关分析定义:通过计算定距变量间两两相关的相关系数,对两个或两个以上定距变量之间两两相关的程度进⾏分析。
定距变量:⼜称为间隔(interval)变量,它的取值之间可以⽐较⼤⼩,可以⽤加减法计算出差异的⼤⼩。
Pearson简单相关系数⽤来衡量定距变量间的线性关系对Pearson简单相关系数的统计检验是计算t统计量SPSS操作2.⼆元定序变量的相关分析定序变量:⼜称为有序(ordinal)变量、顺序变量,它取值的⼤⼩能够表⽰观测对象的某种顺序关系(等级、⽅位或⼤⼩等)Spearman和Kendall's tua-b等级相关系数⽤以衡量定序变量间的线性相关关系,它们利⽤的是⾮参数检验的⽅法。
第八章SPSS的相关分析和线性相关分析在统计学中,相关分析是用来研究两个或多个变量之间关系的一种方法。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可用于进行相关分析和线性相关分析。
本章将介绍如何使用SPSS进行相关分析和线性相关分析,以及如何解释分析结果。
一、相关分析相关分析是一种用于研究变量之间关系的统计方法。
通过相关分析可以确定两个或多个变量之间的关联程度,以及这种关联程度的方向(正相关或负相关)。
在SPSS中进行相关分析的步骤如下:1.打开SPSS软件,选择“文件”>“打开”>“数据”,选择要进行分析的数据文件,点击“打开”。
2.在菜单栏中选择“分析”>“相关”>“双变量”或“多变量”。
3. 在弹出的对话框中,将变量移动到“变量”框中。
可以选择自定义相关性系数的类型,如Pearson相关系数、Spearman相关系数等。
4.点击“OK”进行相关分析。
5.SPSS将生成一个相关矩阵和一个相关系数表格,展示了变量之间的关联程度。
在进行相关分析时,需要注意以下几点:1.相关系数的取值范围为-1到1,-1表示完全负相关,1表示完全正相关,0表示没有相关性。
2.根据相关系数的取值大小可以判断变量之间的关联程度,一般认为相关系数大于0.7为强相关,0.3到0.7为中等相关,小于0.3为弱相关。
3.相关分析只能判断变量之间是否存在关系,不能确定因果关系。
线性相关分析是一种用于研究两个变量之间线性关系的统计方法。
通过线性相关分析可以确定两个连续变量之间的关联程度,以及这种关联程度的方向(正相关或负相关)。
在SPSS中进行线性相关分析的步骤如下:1.打开SPSS软件,选择“文件”>“打开”>“数据”,选择要进行分析的数据文件,点击“打开”。
2.在菜单栏中选择“分析”>“相关”>“双变量”。