7.3 偏相关分析
(4) SPSS实现举例
【例7-3】 下表是四川绵阳地区3年生中山柏的数据,分析月生长 量与月平均气温、月降雨量、月平均日照时数、月平均湿度4个气 候因素中哪些因素有关。
月 份
月生 月平均 长量 气温
月降 雨量
月平均日 照时数
月平均 湿度
月份
月生 长量
月平均 气温
月降 雨量
月平均日 月平均 照时数 湿度
方位或大小等)。定序变量的相关系数用斯皮尔曼(Spearman)相关系 数和肯德尔(Kendall’s )相关系数来衡量。
Spearman相关系数及Z统计量
n
6
D
2 i
r
1
i1
n (n 2
1)
Z r n1
Kendall’s等级相关系数 及Z统计量
(UV) 2
n(n1)
Z
9n(n 1) 2(2n 5)
7.4 距离分析
相似性测度
对于定距数据主要使用皮尔逊相关系数和夹角余弦距离; 对于二值数据的相似性测度主要包括简单匹配系数、Jaccard相似性 指数、Hamann相似性测度等20余种。
其中的距离又分为个案(观测记录)之间的距离和变量之间的 距离两种。
(3) 分析步骤
距离分析中不存在假设检验问题,主要是通过SPSS自动计算
Spearman相关系数及Z统计量
Pearson 相关性
偏相关分析的任务就是在研究两个变量之间的线性相关关系时控制可能对其产生影响的变量,这种相关系数称为偏相关系数。
当≤|r时视为中度相关;
r r r r r r r r 当其偏|中相r时的 关说x距分y明离析,变z又的量分任之为务间个就的案是相(在关观研性测究x很记两y弱录个。)变2之量间之xz的间距的y离线z 和性变相2量关之关间系的时距控离制两可x种能y,。对z1其z2产生影响的变量x,y,这z1种2相关系xz数1称,z为2偏y相z2关,2系z1数。