比例尺(例1)
- 格式:ppt
- 大小:2.09 MB
- 文档页数:17
比例尺(1)【教学内容】比例尺(1)(教材第53页内容)。
【教学目标】1.从学生的生活实际出发认识比例尺,理解比例尺的含义,使学生会求一幅图的比例尺。
2.让学生经历比例尺的探究过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系,培养学生的探究意识和创新意识。
【重点难点】理解比例尺的含义。
【教学准备】投影仪,比例尺不同的地图,机器零件纸,北京的平面图。
【情景导入】教师:(出示两幅不同的地图,让学生思考两幅图中北京到上海中的距离一样吗?为什么不一样?因为它们的比例尺不一样。
这节课我们就一起来研究比例尺。
【新课讲授】1.比例尺的意义。
(1)教师讲解:因为在绘制地图和其它平面图时,经常要用到图上距离与实际距离的比,我们就把它起个名字,叫做比例尺。
(板书:图上距离:实际距离=比例尺)有时图上距离与实际距离的比也可以写成分数形式。
(板书: =比例尺) 图上距离是比的前项,实际距离是比的后项。
为了计算简便,通常把比例尺写成前项或后项是1的最简整数比。
(2)教师出示地图,引导学生观察1∶100000000。
(3)组织学生议一议:比例尺中的“1”表示什么?“100000000”表示什么?指名说一说:“1”表示图上距离,“100000000”表示实际距离,也就是说图上实际距离图上距离1cm 的距离表示实际距离100000000cm 。
教师说明:1∶100000000是数值比例尺,有时写成。
(4)引导学生观察比例尺。
适时讲解:这是线段比例尺,表示线段的长度1cm 是图上距离,50km 是实际距离,也就是说图上距离1cm 代表着实际距离是50km 。
(5)教师用投影出示图纸。
引导学生观察图中的比例尺2∶1表示什么? 指名汇报:2∶1表示图上距离是实际距离的2倍。
教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在纸上。
这时比例尺的前项比后项大。
为了计算方便,通常把比例尺写成前项或后项是1的比。
比例尺例1:比例尺及其求法。
在教学例1之前,教材着重介绍了以下知识内容:比例尺的概念;比例尺的不同表示形式(数值比例尺和线段比例尺)及其线段比例尺转化为数值比例尺的方法(原实验教材以例1的形式编排);沟通比例尺与分数的关系;除了用比例尺表示把实际距离缩小画在图纸上,还介绍了生活中把实际距离放大的情况等。
其中,教材强调在线段比例尺转化为数值比例尺时要特别注意单位的统一,再化简成最简成数比;另外,在用数值比例尺表示时,为便于计算,对一般的表示形式也做了特别的说明,即一般把比例尺写成前项或后项是1的形式。
之后的例1教学,就是根据比例尺的定义,介绍了比例尺的求法:利用图上距离和相对应的实际距离,先统一长度单位,再相比、化简。
例2:比例尺的应用。
教材提供了一个真实的问题情境:根据北京轨道交通路线示意图,求两站之间的实际距离。
教材给出了完整的解题过程:首先引导学生如何思考,再给出了从设未知数、列出比例以及解比例求出实际距离的具体过程。
在教学的过程中,特别要注意培养学生以下几方面的技能:在示意图上寻找比例尺的信息;经历并能反思求实际距离的思维过程:根据比例尺列出比例,解比例求出未知数的值,再换算成合适的单位。
例3:应用比例尺画平面图。
本例是综合运用比例尺、方位的有关知识解决实际问题。
与原实验教材相比,修订版教材提供了绘制简易位置的平面图,给出了比例尺,这大大降低了学生学习的难度。
【知识与技能】 使学生理解比例尺的意义并能正确地求出平面图的比例尺。
【过程与方法】使学生能够应用比例知识,根据比例尺求图上距离或实际距离。
【情感、态度与价值观】在探究过程体验成功的乐趣。
【教学重点】理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离,画位置平面图。
【教学难点 】设未知数时长度单位的使用。
一、复习准备(一)填空。
1千米=( )米1分米=( )厘米1米=( )分米1厘米=( )毫米30米=( )厘米300厘米=( )分米15千米=( )厘米40毫米=( )厘米(二)解比例。
比例尺的三种公式(一)
比例尺的三种公式
1. 线性比例尺公式
•线性比例尺公式用于计算地图上物体的实际长度与地图上的表示长度之间的比例关系。
•公式:实际长度 = 地图上的表示长度× 比例尺分母
•举例:某张地图上标注的一段公路长度为5厘米,比例尺为1:10000,求实际公路长度。
解答:实际长度 = 5厘米× 10000 = 50000厘米 = 500米
2. 面积比例尺公式
•面积比例尺公式用于计算地图上物体的实际面积与地图上的表示面积之间的比例关系。
•公式:实际面积 = 地图上的表示面积× 比例尺分母的平方
•举例:某张地图上标注的一个湖泊面积为10平方厘米,比例尺为1:20000,求实际湖泊面积。
解答:实际面积 = 10平方厘米× ^2 = 平方厘米= 4平方千米
3. 体积比例尺公式
•体积比例尺公式用于计算地图上物体的实际体积与地图上的表示体积之间的比例关系。
•公式:实际体积 = 地图上的表示体积× 比例尺分母的立方
•举例:某张地图上标注的一座山的体积为立方厘米,比例尺为1:50000,求实际山的体积。
解答:实际体积 = 立方厘米× ^3 = 00立方厘米= 立方千米。