F-博弈论专题-4-1混合纳什均衡
- 格式:ppt
- 大小:258.00 KB
- 文档页数:22
博弈论纳什均衡什么是纳什均衡?1、纳什均衡(Nash equilibrium ),又称非合作博弈均衡,是博弈论概念,指的是:一种博弈稳定结果,谁单方改变策略,谁就会损失。
两个囚徒互相揭发,就是一种纳什均衡。
对于每个囚徒来说,如果打破纳什均衡,在对方实施揭发策略时,改变揭发策略,保持沉默,自己就会由判刑2年,变成判刑5年。
也就是说,两个囚徒互相揭发是稳定博弈结果,谁单方改变策略,就会受到损失。
这也就是均衡涵义所在,两个囚徒从利己角度,都不会单方改变策略。
博弈策略稳定,博弈结果也稳定。
之所以命名为纳什均衡,是因为提出者是经济学家、博弈论创始人约翰.纳什。
之所以称为非合作博弈均衡,原因就是:两个囚徒如果合作,互相保持沉默,各自只要坐牢1年;但最终博弈结果,也就是纳什均衡显著特征,是不合作。
2、纳什均衡意义重大。
纳什均衡提出,震动整个经济学界。
诺贝尔经济学奖得主萨缪尔森曾说:“你只要教会鹦鹉说‘需求和供给’,它也是经济学家。
”博弈论专家坎多瑞则说:“这只鹦鹉现在必须多学一个词了,那就是‘纳什均衡’。
”诺贝尔经济学奖得主迈尔森也说:“发现纳什均衡意义,可以和生命科学中发现DNA 双螺旋结构相媲美。
”纳什也因为提出纳什均衡,创立博弈论,而获得1994年诺贝尔经济学家奖。
纳值均衡意义重大,简单来说,就是它对于经济学具有重大意义。
读友们如果了解经济学看不见的手原理,就知道,古典经济学认为,通过市场这只‘看不见的手’调节,个体追求私利行为,会促进集体利益最大化。
但纳什均衡却违反上述原理:两个囚徒分别追求私利行为,并没有促进集体(囚徒整体)利益最大化,反而是损人不利己。
这正是市场失灵软肋之处,通过博弈论视角可以得到合乎逻辑解释,更有条件找到合适解决方案。
从上述这点,读友们可以“一斑窥全豹”,感受到博弈论重要性。
更重要的是,纳什均衡非常普遍,小至个人沟通,中到公司竞争,大到国家往来,都可以观察到。
Q2:怎样运用纳什均衡?1、分析囚徒困境。
博弈论混合策略纳什均衡名词解释博弈论混合策略纳什均衡是指在博弈论中,当参与者不能确定选
择某一个策略时,采取混合策略的情况下达到的均衡状态。
具体来说,混合策略是指在一个博弈中,参与者以一定的概率选
择不同的纯策略。
而纳什均衡是指在一个博弈中,参与者无法通过单
独改变自己的选择来获得更好的结果,即不存在任何参与者可以通过
改变自己的策略来让其他参与者不再选择当前策略。
混合策略纳什均衡是指游戏中所有参与者以一定的概率选择不同
的纯策略,并且这种概率分配对于所有参与者都是最优的。
也就是说,在混合策略纳什均衡下,参与者没有更好的选择可供其采取,而其他
参与者也没有更好的概率分配可供其选择。
拓展:
在博弈论中,还有许多其他类型的均衡概念,例如纯策略纳什均衡、帕累托均衡、部分均衡等等。
纯策略纳什均衡是指游戏中参与者
以确定性的纯策略进行选择,使得没有参与者可以通过改变其策略来
获得更好的结果。
帕累托均衡是指在一个博弈中,不存在可以改善任
何一个参与者的情况。
部分均衡是指只有某些参与者达到均衡状态,而其他参与者未达到均衡状态。
博弈论是研究决策制定者在相互影响下进行决策的数学工具。
通过分析不同的博弈策略和可能的结果,博弈论可以帮助我们理解冲突和合作的情况,并提供一些决策建议。
混合纳什均衡纳什均衡是指这样一种均衡:在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。
”也就是说,所有人的战略都是最优的。
而讲解“纳什均衡”的最著名的案例就是“囚徒的困境”。
a,b两个囚徒,a坦白b抵赖,b判10年,a判1年.若两人均坦白则各判5年,若两人均抵赖则都判2年。
a,b 面临抉择。
显然最好的策略是双方都抵赖,结果是大家都只被判2年。
但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。
这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐1年,而他会坐10年牢,也是招了划算。
综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。
两个人都会动这样的脑筋,最终,两个人都选择了招,结果都被判5年刑期。
原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。
这就是著名的“囚徒困境”。
它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。
混合策略均衡求解的一个原则是混合策略均衡赋予正概率的所有纯策略的期望收益相等。
假设这是个两个玩家的游戏。
玩家a有2种纯策略a和b,不能相互支配。
玩家b有2种纯策略c和d,不能相互支配。
设a选a的几率是p,则选b的几率为1-p;设b选c的几率是q,则选d的几率为1-q当a取某一个p=p0,b获得的总效用不为自己q的取值而改变;b取某一个q=q0,a获得的总效用不为自己p 的取值而改变,此时我们说(p0,1-p0)和(q0,1-q0)是一对混合策略下的纳什均衡。
混合策略纳什均衡:在n个参与人的博弈G={S1,...Sn;u1,...un}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。
混合纳什均衡混合纳什均衡是一种多人博弈模型,也被称为“混合博弈”,可以模拟多方参与者协商、合作和竞争的过程。
这种理论是基于纳什均衡的,在纳什均衡中,每个参与者都有唯一的利益,各参与者的最优策略协作,从而达到最大的利益。
混合纳什均衡是一种非零和纳什均衡,这意味着在一局游戏中,所有参与者可以实现共赢的结果,而不是某些参与者的利益以牺牲其他参与者的利益为代价。
这种理论很有用,因为它可以帮助参与者解决复杂的多方协商问题,降低买卖双方的损失。
混合纳什均衡有三类参与者:合作者、竞争者和不确定者。
这三类参与者行为的不同可能会影响混合纳什均衡的最终结果。
首先,合作者是指参与者之间相互合作,面对游戏的结果,合作者会达成有利于双方的互惠交易。
其次,竞争者是指参与者之间存在竞争,他们拼劲、追求自身最大利益,甚至牺牲他人利益也在所不惜。
最后,不确定者是指参与者对其他参与者的行为不太清楚,不确定者在游戏中会被动地接受其他参与者的影响,不会太过激进地为自身争取利益。
混合纳什均衡的应用非常广泛,它可以用来模拟经济、政治和外交等领域中的多方协商。
例如,混合纳什均衡可以用来模拟多个国家的贸易谈判,各国可以混合地拼争,双赢共赢的结果也可以从混合纳什均衡中获得。
此外,混合纳什均衡还可以用于多方竞争,各参与者一方面决策自身利益,另一方面也考虑到他人利益,以免损害自己的利益。
混合纳什均衡由一系列经典模型构成,例如拉斯维加斯博弈、巴斯-马丁斯博弈、多人贪心渐近博弈和贝叶斯优化博弈等等。
这些经典模型可以帮助参与者更容易地找到最大利益的解决方案,从而使参与者可以面对复杂的多方协商游戏实现共赢。
混合纳什均衡受到了日益普及和重视。
从商业活动到政治事务,混合纳什均衡已经被广泛地应用,而且也取得了许多成功案例。
在政治领域,混合纳什均衡可以帮助各个利益派系达成协议,减少谈判的紧张和矛盾,从而使多方收获相对平衡的政治结果。
此外,混合纳什均衡也有不足之处,例如模型的复杂性使得集成分析变得更加困难,可能引发新的潜在问题,而且由于参与者的利益不断变化,使用混合纳什均衡可能无法达到预期的最终结果。
混合策略纳什均衡混合策略纳什均衡是博弈论中一个重要的概念。
纳什均衡是指在一个博弈中,每个参与者都选择了最优的策略,而且即使其他参与者知道其他参与者的策略,他们也无法从自己的策略中获得更大的利益。
而混合策略则是指参与者通过随机化选择不同策略的概率来达到最优策略。
本文将深入探讨混合策略纳什均衡的概念、特点以及计算方法。
首先,混合策略纳什均衡是指参与者通过一定概率选择不同策略的方式达到最优策略。
在混合策略中,每个参与者都拥有一个策略概率分布,表示他们在不同策略下的选择概率。
这样,在博弈中,每个参与者将根据其策略概率分布中的概率随机选择其中一种策略。
对于每个参与者而言,他们的目标是通过选择最优的策略概率分布来最大化自己的期望收益或最小化自己的期望损失。
其次,混合策略纳什均衡与纳什均衡相比具有以下特点。
首先,混合策略纳什均衡可以推翻完全信息博弈中的固定策略均衡结果。
在完全信息博弈中,参与者可以根据对其他参与者策略的了解来做出精确决策,因此均衡状态是唯一确定的。
而在混合策略博弈中,由于参与者通过概率选择不同策略,他们无法准确地预测其他参与者的策略,因此均衡状态不再是唯一确定的。
其次,混合策略纳什均衡可以引入不确定性,增加博弈的复杂性。
参与者无法准确地预测其他参与者的策略,因此他们需要通过一定的概率选择策略来平衡风险与收益。
最后,混合策略纳什均衡可以通过均衡态的共同选择来实现长期的稳定状态。
在混合策略纳什均衡中,参与者通过随机化选择策略,从而消除了其他参与者可以预测自己策略的可能性,增加了稳定性。
最后,计算混合策略纳什均衡的方法主要有以下两种。
一种是通过计算参与者的最优策略概率分布来确定混合策略纳什均衡。
这种方法主要基于线性规划技术,通过最大化或最小化参与者的期望收益或损失来确定最优的策略概率分布。
另一种方法是通过迭代算法来求解混合策略纳什均衡。
这种方法主要是通过反复更新参与者的策略概率分布,直到达到均衡状态。
混合纳什均衡混合纳什均衡(MixedNashEquilibrium)是一种在博弈模型中用于表示多人游戏中多个参与者之间协商达成不同利益最优化解决方案的一种综合策略。
它最初由纳什(JohnNash)在1950年的著作中提出,作为一种游戏论中的重要概念,它在很多复杂的博弈中发挥着重要作用。
它是多人博弈的理论基础,在实体经济系统中也有应用。
混合纳什均衡的主要特点是每个参与者都拥有不同的策略,当每个参与者选择其中一种策略时,就能够使参与者的收益达到最大值。
混合纳什均衡的概念混合纳什均衡是多人博弈中最重要的概念之一,它是一种衡量博弈中参与者策略选择的综合结果。
一般情况下,博弈参与者有多种不同的选择,每个参与者也可以选择不同的策略,而混合纳什均衡是描述每个参与者选择某种策略的结果而实现的收益最大化。
当每个参与者选择了一种策略后,就可以使参与者的期望收益达到最大值。
混合纳什均衡在实体经济中的应用混合纳什均衡也可以被应用于实体经济中,比如政府改革。
政府制定改革政策时,通常会考虑政策的社会效应,如政策对收入分配的影响等。
使用混合纳什均衡的政策可以确保政策的实施会增加政府的收入,同时达到社会的最大利益。
例如,当使用混合纳什均衡来解决税收制度时,政府可以通过分析每个阶层的收入分配,制定出一种具有征税灵活性的税收体制,从而确保政府的税收收入和社会的分配公平。
在市场中,混合纳什均衡也可以用来解决政府与市场之间潜在的冲突。
混合纳什均衡可以帮助政府分析平衡市场经济供需关系,确定出最优的市场竞争环境。
总结混合纳什均衡是一种在博弈模型中用于表示多人游戏中多个参与者之间协商达成不同利益最优化解决方案的一种综合策略。
它最初由纳什(John Nash)在1950年的著作中提出。
每个参与者都拥有不同的策略,当每个参与者选择其中一种策略时,就能够使参与者的收益达到最大值。
混合纳什均衡不仅可以在博弈中应用,也可以在实体经济中应用,比如政府改革和市场竞争。