静定结构的位移计算-图乘法
- 格式:ppt
- 大小:422.00 KB
- 文档页数:10
6-1 求图示桁架AB 、AC 的相对转角,各杆EA 为常量。
解:(1)实状态桁架各杆的轴力如图(b )所示。
(b)(a)N(d )(c)题6-1N N(2)建立虚设单位力状态如(c )所示,求AB 杆的转角。
1113(2)82i P iAB i i P a P a P a N N l P a a a E A EA EA EA EAϕ⋅⋅⋅⋅-⋅-⋅⋅⋅==++⨯=∑(↺)(3)建立虚设单位力状态如(d )所示,求AC 杆的转角。
113(2)()(72i P i AC i iP a P a N N lPa a E A EA EA EAϕ⋅⋅⋅-⋅-⋅⋅==+⨯=∑(↺)故,AB 、AC 的相对转角为两杆转角之差:8(7(10.414AB AC P P P PEA EA EA EAϕϕϕ+-=-=-==-(夹角减小)6-2 求半圆曲梁中点K 的竖向位移。
只计弯曲变形。
EI 为常数。
方法一 解:(1)荷载作用下的实状态的约束反力如图(a )所示。
以任意半径与水平坐标轴的顺时针夹角为自变量,其弯矩方程为:sin (0)P M θθπ=-≤≤Pr(2)建立虚设单位力状态如(b )所示,其弯矩方程为:[]1cos )(0)2211cos()cos )()222i M πθθππθθθπ⎧≤≤⎪⎪=⎨⎪-=≤≤⎪⎩(r -r r -r (r +r(a)题6-2(3)积分法求半圆曲梁中点K 的竖向位移。
20233220022311cos )(sin )cos )(sin )2211cos )sin cos )sin sin sin 2)sin sin 2)2222cos 2i V Pk Pr Pr M M ds rd rd EIEI EI Pr Pr d d d d EI EI Pr EI πππππππππθθθθθθθθθθθθθθθθθθθ⋅-⋅-⋅∆==+⎡⎤⎡⎤=-⋅+⋅=-+⋅⎢⎥⎢⎥⎣⎦⎣⎦=-∑⎰⎰⎰⎰⎰⎰⎰(r -r (r +r (-(+(-(+(-11320211cos 2)cos cos 2)442Pr EI πππθθθ⎡⎤⎢⎥+-+=-↑⎢⎥⎣⎦()( 方法二:本题也可以只算纵向对称轴左边,再乘2。
第4章静定结构的位移计算计算结构位移的目的结构在荷载作用下会产生内力,同时使其材料产生应变,以致结构发生变形。
由于变形,结构上各点的位置将会发生改变。
杆件结构中杆件的横截面除移动外,还将发生转动。
这些移动和转动称为结构的位移。
此外,结构在其他因素如温度改变、支座位移等的影响下,也都会发生位移。
b5E2RGbCAP例如图4—1a所示简支梁,在荷载作用下梁的形状由直变弯,如图4—1b所示。
这时,横截面的形心移动了一个距离,称为点的线位移。
同时截面还转动了一个角度,成为截面的角位移或转角。
p1EanqFDPw又如图4—2a所示结构,在内侧温度升高的影响下发生如图中虚线所示的变形。
此时,C点移至C点,即C点的线位移为C C。
若将C C沿水平和竖向分解<图4—2b),则分量C C和CC分别称为C点的水平位移和竖向位移。
同样,截面C还转动了一个角度,这就是截面C的角位移。
DXDiTa9E3d在结构设计中,除了要考虑结构的强度外,还要计算结构的位移以验算其刚度。
验算刚度的目的,是保证结构物在使用过程中不致发生过大的位移。
RTCrpUDGiT计算结构位移的另一重要目的,是为超静定结构的计算打下基础。
在计算超静定结构的反力和内力时,除利用静力平衡条件外,还必须考虑结构的位移条件。
这样,位移的计算就成为解算超静定结构时必然会遇到的问题。
5PCzVD7HxA此外,在结构的制作、架设等过程中,常须预先知道结构位移后的位置,以便采取一定的施工措施,因而也须计算其位移。
jLBHrnAILg本章所研究的是线性变形体系位移的计算。
所谓线性变形体系是位移与荷载成比例的结构体系,荷载对这种体系的影响可以叠加,而且当荷载全部撤除时,由何在引起的位移也完全消失。
这样的体系,变形应是微小的,且应力与应变的关系符合胡克定律。
由于变形是微小的,因此在计算结构的反力和内力时,可认为结构的几何形状和尺寸,以及荷载的位置和方向保持不变。
xHAQX74J0X功广义力和广义位移在力学中,功的定义是:一个不变的集中力所作的功等于该力的大小与其作用点沿力作用线方向所发生的分位移的乘积。
结构位移计算中复杂图形图乘法技巧探析摘要:以结构力学位移计算中复杂图形图乘法为背景,分析了图乘法的三个应用条件,总结了复杂图乘法的常用方法。
以线荷载作用下悬臂梁中点竖向位移和变刚度悬臂梁端点竖向位移的两个计算实例,分析了构造标准抛物线图形的技巧,总结了图乘法分段图乘、加减相伴的图乘原则,对复杂图形图乘法的计算效率大大提高。
关键词:结构力学;位移计算;图乘法;技巧探析1图乘法的基本公式结构力学单位荷载法计算位移的一般公式中,由积分法计算梁或刚架杆件的结点或截面位移。
若积分法满足如下三个条件:其一,杆件是直杆;其二,截面抗弯刚度EI为常数;其三,两个图形中至少有一个是直线图形时,可以采用图乘法求解结点或截面位移[1-2]。
图乘法的应用简化了位移计算求解过程,减少了计算量。
图乘法的发明是由当时为莫斯科铁路运输学院的学生V ereshchagin于1925年提出,该方法后以他的名字被命名为韦列夏金规则。
位移积分法简化为图乘法的公式如式(1),具体推导过程参见文献[3-4]。
∫BAMiMkEIds=1EIωy0(1)式中,Mi,Mk中至少有一个图形是直线的弯矩图,EI是截面抗弯刚度且为常数,A,B是杆件积分区间,ds是截面微段,ω是曲线弯矩的面积(若两弯矩图均为直线,可任取),y0是曲线弯矩图的形心位置对应直线弯矩图的纵坐标。
2复杂图乘法分析结构力学教材中给出一般图乘法总结如下:式中括号内a,b,c,d同侧为正,异侧为负。
特殊情况一个梯形为三角形,式(2)的a,b,c,d中一项为0,问题得以简化。
除文献4介绍的两种方法外,还可以采用延长1弯矩图形的方法。
图2中Mp弯矩图分解为ω1和ω2,ω1沿整个l长度为标准二次抛物线,对应形心位置为y1;同样ω2沿右端l/2长度为标准二次抛物线,对应形心位置为y2;两者所得位移相减,即为ΔC的竖向位移,如式(3)。
Δc=ω1·y1-ω2·y2=1EI[13·12ql2·l·l4-(-13·18ql2·l2·l8)]=17ql4384EI(↓)(3)实例二,求解图3(a)B点竖向位移,(沿杆件各段EI不同)由于沿直杆EI不同,常用方法必须采用分段图乘。