多元统计分析作业一(第三题)
- 格式:doc
- 大小:136.00 KB
- 文档页数:7
《多元统计分析》习题分为三部分:思考题、验证题和论文题思考题第一章绪论1﹑什么是多元统计分析?2﹑多元统计分析能解决哪些类型的实际问题?第二章聚类分析1﹑简述系统聚类法的基本思路。
2﹑写出样品间相关系数公式。
3﹑常用的距离及相似系数有哪些?它们各有什么特点?4﹑利用谱系图分类应注意哪些问题?5﹑在SAS和SPSS中如何实现系统聚类分析?第三章判别分析1﹑简述距离判别法的基本思路,图示其几何意义。
2﹑判别分析与聚类分析有何异同?3﹑简述贝叶斯判别的基本思路。
4﹑简述费歇判别的基本思路。
5﹑简述逐步判别法的基本思想。
6﹑在SAS和SPSS软件中如何实现判别分析?第四章主成分分析1﹑主成分分析的几何意义是什么?2﹑主成分分析的主要作用有那些?3﹑什么是贡献率和累计贡献率,其意义何在?4﹑为什么说贡献率和累计贡献率能反映主成分中所包含的原始变量的信息?5﹑为什么要用标准化数据去估计V的特征向量与特征值?6﹑证明:对于标准化数据有S=R。
7﹑主成分分析在SAS和SPSS中如何实现?第五章因子分析1﹑因子得分模型与主成分分析模型有何不同?2﹑因子载荷阵的统计意义是什么?3﹑方差旋转的目的是什么?4﹑因子分析有何作用?5﹑因子模型与回归模型有何不同?6﹑在SAS和SPSS中如何实现因子分析?第六章对应分析1﹑简述对应分析的基本思想。
2﹑简述对应分析的基本原理。
3﹑简述因子分析中Q型与R 型的对应关系。
4﹑对应分析如何在SAS和SPSS中实现?第七章典型相关分析1﹑典型相关分析适合分析何种类型的数据?2﹑简述典型相关分析的基本思想。
3﹑典型变量有哪些性质?4﹑典型相关系数和典型变量有何意义?5﹑典型相关分析有何作用?6 ﹑在SAS和SPSS中如何实现典型相关分析?验证题第二章聚类分析1、为了更深入了解我国人口的文化程度,现利用1990年全国人口普查数据对全国30个省、直辖市、自治区进行聚类分析。
分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人都占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映较高、中等、较低文化程度人口的状况。
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
一、聚类分析为了研究2010年全国各地区城镇居民家庭平均每人全年消费性支出的分布规律,根据抽样调查资料进行分类处理,共抽取31个省、市、自治区的样本,每个样本有7个指标:食品、衣着、居住、家庭设备用品及服务、医疗保健、交通和通信、教育文化娱乐服务。
这7个指标反映了平均每人生活消费的支出情况,其数据资料见下表1所示。
表1定义变量及标签:设:X1:地区X2:食品支出X3:衣着支出X4:居住支出X5:家庭设备用品及服务支出X6:医疗保健支出X7:交通和通信支出X8:教育文化娱乐服务支出通过SPSS软件操作,得到如下输出结果见表2—表5所示。
表2表3表4表4给出了聚类的凝聚过程情况。
表5给出了样品聚为三类时的样品归类情况。
C A S E 0 5 10 15 20 25 Label Num +---------+---------+---------+---------+---------+甘肃 28 -+青海 29 -+新疆 31 -+河北 3 -+---+山西 4 -+ |河南 16 -+ |宁夏 30 -+ |黑龙江 8 -+ +-------+陕西 27 -+ | |云南 25 -+-+ | |西藏 26 -+ | | |广西 20 -+ +-+ |海南 21 -+ | |江西 14 -+-+ |贵州 24 -+ +-----------------------------------+ 湖北 17 -+ | | 湖南 18 -+ | | 四川 23 -+ | | 安徽 12 -+ | | 江苏 10 -+-+ | | 福建 13 -+ | | | 辽宁 6 -+ +---------+ | 吉林 7 -+ | | 山东 15 -+-+ | 重庆 22 -+ | 内蒙古 5 -+ | 天津 2 -+ | 浙江 11 -+-+ | 北京 1 -+ +-+ | 广东 19 ---+ +-------------------------------------------+ 上海 9 -----+图1图1是聚类全过程的树形图。
多元统计分析习题一、填空题22121212121~(,),(,),(,),,123X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(3,)=____.10512~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑ 、设则=服从。
3.__________, __________,________________。
214,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=-- 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
二、计算题123323*********(,,)~(,),(3,4,2),441,214X x x x N x x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪+⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
《多元统计分析》试卷1、若 且相互独立,则样本均值向量服从的分布为。
2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、型聚类是指对_样品_进行聚类,型聚类是指对_指标(变量)_进行聚类。
5、设样品,总体,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离。
6、因子分析中因子载荷系数的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
1、设三维随机向量,其中,问与是否独立?和是否独立?为什么?解: 因为,所以与不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和是不相关的,而正态分布不相关与相互独立是等价的,所以和是独立的.2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4。
5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图. 解:样品与样品之间的明氏距离为:样品最短距离是1,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵 类与类的最短距离是1。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵类与类的最短距离是3。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵分类与聚类图(略)(请你们自己做)3、设变量的相关阵为的特征值和单位化特征向量分别为一、填空题(每空2分,共40分)二、计算题(每小题10分,共40分)(1) 取公共因子个数为2,求因子载荷阵。
(2) 计算变量共同度及公共因子的方差贡献,并说明其统计意义。
解:因子载荷阵变量共同度: ===公共因子的方差贡献:统计意义(省略)(学生自己做)4、设三元总体的协方差阵为,从出发,求总体主成分,并求前两个主成分的累积贡献率。
多元统计练习题第一章基础统计.数据文件:学生考试成绩。
1.将全体学生的考试成绩按以下标准分为五级:优:90分(含)以上;良:80分(含)以上不足90分;中:70分(含)以上不足80分;及格:60分(含)以上不足70分;不及格:60分(不含)以下。
2.统计每一个等级学生的人数,及占全体学生的比率:3.统计每一个班级中各个等级的学生人数,及占所在班级人数的比率;4.按性别统计各个等级的学生人数及每个等级的平均分、最高分、最低分;5.全体学生中,及格(含)以上的学生人数占全体学生的比率%;80%的学生成绩不低于分?6.生成全体学生成绩直方图;7.用P-P图或Q-Q图观察学生成绩是否来自正态分布。
并结合下一道题(8)的结果来看用P-P图或Q-Q图观察分布的局限性。
8.用K-S检验法,以0.05显著性水平,检验全体学生成绩是否来自正态总体(n或y),检验统计量值z=, 它对应的水平(近似)值Asymp. Sig =。
如果是0.1的显著性水平呢?二.数据文件:公司职工。
1.填表:2.填表:3.对全体职工按年龄(age)分组,标准如下:第1组,青年:age<35;第2 组,中年:35<age<60;第3组,老年:ageN60.填表:4.的%;中年女职工的人数为人,占全体女职工人数的%。
5.中年男办事员的平均当前薪金(salary)为元,他们中的最低受教育年限(educ)是年。
7.该公司80%的员工当前薪金(salary)不低于元。
8.如果把本文件数据看成某个正态总体的样本,试在0.05的显著性水平下检验:1)不同性别职工的平均受教育年限(educ)有无显著差异?(填y或n);检验统计量值t=,显著性值Sig.=。
2)青年职工与中年职工的平均当前薪金(salary)有无显著差异?(填y或n);检验统计量值t=,显著性值Sig.=。
3 )老、中、青三部分人平均受教育年限(educ)分别是:老年人年,中年人年,青年人年。
多元统计分析作业一(第三题)
课程名称:多元统计回归分析
实验项目:边远及少数民族聚居区和会经济发展水平实验类型:验证性
学生学号:
学生姓名:
学生班级:
课程教师:
实验日期: 2016-03-28
)做出统计判断,最后对统计判断作出具体的解释
模块可以完成多元正态分布有关均值与方差的检验。
依次点选
、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲
,由此我们可以知道边远及少数民族聚居区社会经济发展水平与全国平均发展水平中的人均消费存在显著差别,即全国的平均人均消费大于边远及少数民族聚居区人均消费,相差值为
均大于显著性水平
发展水平与全国平均发展水平中的人均
盲半文盲等指标无明显差别。
注:验证性实验仅上交电子文档,设计性试验需要同时上交电子与纸质文档进行备份存档。
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
课程名称:多元统计回归分析
实验项目:边远及少数民族聚居区和会经济发展水平实验类型:验证性
学生学号:
学生姓名:
学生班级:
课程教师:
实验日期: 2016-03-28 (6212.01 , 32.87, 2972, 9.5, 15.78)
μ
μ
)做出统计判断,最后对统计判断作出具体的解释
模块可以完成多元正态分布有关均值与方差的检验。
依次点选
lMultivariate……进入
ββXε
01
、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲
0.05的水平下,
,由此我们可以知道边远及少数民族聚居区社会经济发展水平与全国平均发展水平中的人均消费存在显著差别,即全国的平均人均消费大于边远及少数民族聚居区人均消费,相差值为
文盲半文盲等指标无明显差别。
0.01的水平下,
均大于显著性水平
发展水平与全国平均发展水平中的人均
盲半文盲等指标无明显差别。
注:验证性实验仅上交电子文档,设计性试验需要同时上交电子与纸质文档进行备份存档。