多元统计分析作业一
- 格式:doc
- 大小:281.50 KB
- 文档页数:14
1.多元分析研究的是多个随机变量及其相互关系的统计总体。
2.多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。
3.协方差和相关系数仅仅是变量间离散程度的一种度量,并不能刻画变量间可能存在的关联程度。
4.人们通过各种实践,发现变量之间的相互关系可以分成相关和不相关两种类型。
5.总离差平方和可以分解为回归离差平方和和剩余离差平方和两个部分,各自的自由度为p 和n-p-1,其中回归离差平方和在总离差平方和中所占比重越大,则线性回归效果越显著。
7.偏相关系数是指多元回归分析中,当其他变量固定后,给定的两个变量之间的的相关系数。
8.Spss中回归方程的建模方法有一元线形回归、多元线形回归、岭回归、多对多线形回归等。
9.主成分分析是通过适当的变量替换,使新变量成为原变量的综合变量,并寻求相关性的一种方法。
10.主成分分析的基本思想是:设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
11.主成分的协方差矩阵为对角矩阵。
12.主成分表达式的系数向量是相关系数矩阵的特征向量。
13.原始变量协方差矩阵的特征根的统计含义是原始数据的相关系数。
14.原始数据经过标准化处理,转化为均值为0 ,方差为1 的标准值,且其协方差矩阵与相关系数矩阵相等。
15.样本主成分的总方差等于1 。
16.变量按相关程度为,在相关性很强程度下,主成分分析的效果较好。
17.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为方差贡献度。
19.因子分析是把每个原始变量分解为两部分因素,一部分是公共因子,另一部分为特殊因子。
20.变量共同度是指因子载荷矩阵中第i行元素的平方和。
21.公共因子方差与特殊因子方差之和为 1 。
22.聚类分析是建立一种分类方法,它将一批样哂或变量按照它们在性质上的亲疏程度进行科学的分类。
23.Q型聚类法是按样品进行聚类,R型聚类法是按变量进行聚类。
多元统计分析实验报告实验课程名称多元统计分析实验项目名称多元统计理论的计算机实现年级 2013专业应用统计学学生姓名侯杰成绩理学院实验时间:2015 年05 月07 日学生所在学院:理学院专业:应用统计学班级:9131137001代码及运行结果分析1、均值检验问题重述:某医生观察了16名正常人的24小时动态心电图,分析出早晨3小时各小时的低频心电频谱值(LF)、高频心电频谱值(HF),数据见压缩包,试分析这两个指标的各次重复测定均值向量是否有显著差异。
代码如下:Tsq.test<-function(data,alpha=0.05){data<-as.matrix(read.table("ch37.csv",header=TRUE,sep=",")) #读取数据xdat<-data[,2:4];xbar<-apply(xdat,2,mean); #计算LF指标的均值ydat<-data[,5:7];ybar<-apply(ydat,2,mean); #计算HF指标数据xcov<-cov(xdat); #计算LF样本协差阵ycov<-cov(ydat); #计算HF样本协差阵sinv<-solve(xcov+ycov);#求逆矩阵Tsq<-(16+16-2)*t(sqrt(16*16/(16+16)*(xbar-ybar)))%*%sinv%*%sqrt(16*16/(16+16)*(xbar-ybar)); #计算T统计量Fstat<-((16+16-2)-3+1)/((16+16-2)*3)*Tsq; #计算F统计量pvalue<-as.numeric(1-pf(Fstat,3,16+16-3-1));cat("p值=",pvalue,"\n");if(pvalue>0.05) #结果输出cat('均值向量不存在差异')elsecat('均值向量存在差异');}运行结果及分析:通过运行程序,我们可以得到如下结果:> Tsq.test()p值= 1.632028e-14均值向量存在差异即LF与HF这两个指标的各次重复测定均值向量存在显著差异。
《多元统计分析》习题分为三部分:思考题、验证题和论文题思考题第一章绪论1﹑什么是多元统计分析?2﹑多元统计分析能解决哪些类型的实际问题?第二章聚类分析1﹑简述系统聚类法的基本思路。
2﹑写出样品间相关系数公式。
3﹑常用的距离及相似系数有哪些?它们各有什么特点?4﹑利用谱系图分类应注意哪些问题?5﹑在SAS和SPSS中如何实现系统聚类分析?第三章判别分析1﹑简述距离判别法的基本思路,图示其几何意义。
2﹑判别分析与聚类分析有何异同?3﹑简述贝叶斯判别的基本思路。
4﹑简述费歇判别的基本思路。
5﹑简述逐步判别法的基本思想。
6﹑在SAS和SPSS软件中如何实现判别分析?第四章主成分分析1﹑主成分分析的几何意义是什么?2﹑主成分分析的主要作用有那些?3﹑什么是贡献率和累计贡献率,其意义何在?4﹑为什么说贡献率和累计贡献率能反映主成分中所包含的原始变量的信息?5﹑为什么要用标准化数据去估计V的特征向量与特征值?6﹑证明:对于标准化数据有S=R。
7﹑主成分分析在SAS和SPSS中如何实现?第五章因子分析1﹑因子得分模型与主成分分析模型有何不同?2﹑因子载荷阵的统计意义是什么?3﹑方差旋转的目的是什么?4﹑因子分析有何作用?5﹑因子模型与回归模型有何不同?6﹑在SAS和SPSS中如何实现因子分析?第六章对应分析1﹑简述对应分析的基本思想。
2﹑简述对应分析的基本原理。
3﹑简述因子分析中Q型与R 型的对应关系。
4﹑对应分析如何在SAS和SPSS中实现?第七章典型相关分析1﹑典型相关分析适合分析何种类型的数据?2﹑简述典型相关分析的基本思想。
3﹑典型变量有哪些性质?4﹑典型相关系数和典型变量有何意义?5﹑典型相关分析有何作用?6 ﹑在SAS和SPSS中如何实现典型相关分析?验证题第二章聚类分析1、为了更深入了解我国人口的文化程度,现利用1990年全国人口普查数据对全国30个省、直辖市、自治区进行聚类分析。
分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人都占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映较高、中等、较低文化程度人口的状况。
一、聚类分析为了研究2010年全国各地区城镇居民家庭平均每人全年消费性支出的分布规律,根据抽样调查资料进行分类处理,共抽取31个省、市、自治区的样本,每个样本有7个指标:食品、衣着、居住、家庭设备用品及服务、医疗保健、交通和通信、教育文化娱乐服务。
这7个指标反映了平均每人生活消费的支出情况,其数据资料见下表1所示。
表1定义变量及标签:设:X1:地区X2:食品支出X3:衣着支出X4:居住支出X5:家庭设备用品及服务支出X6:医疗保健支出X7:交通和通信支出X8:教育文化娱乐服务支出通过SPSS软件操作,得到如下输出结果见表2—表5所示。
表2表3表4表4给出了聚类的凝聚过程情况。
表5给出了样品聚为三类时的样品归类情况。
C A S E 0 5 10 15 20 25 Label Num +---------+---------+---------+---------+---------+甘肃 28 -+青海 29 -+新疆 31 -+河北 3 -+---+山西 4 -+ |河南 16 -+ |宁夏 30 -+ |黑龙江 8 -+ +-------+陕西 27 -+ | |云南 25 -+-+ | |西藏 26 -+ | | |广西 20 -+ +-+ |海南 21 -+ | |江西 14 -+-+ |贵州 24 -+ +-----------------------------------+ 湖北 17 -+ | | 湖南 18 -+ | | 四川 23 -+ | | 安徽 12 -+ | | 江苏 10 -+-+ | | 福建 13 -+ | | | 辽宁 6 -+ +---------+ | 吉林 7 -+ | | 山东 15 -+-+ | 重庆 22 -+ | 内蒙古 5 -+ | 天津 2 -+ | 浙江 11 -+-+ | 北京 1 -+ +-+ | 广东 19 ---+ +-------------------------------------------+ 上海 9 -----+图1图1是聚类全过程的树形图。
多元统计分析多元统计分析习题集(⼀)⼀、填空题1.若()(,),(1,2,,)p X N n αµα∑= 且相互独⽴,则样本均值向量X 服从的分布是____________________。
2.变量的类型按尺度划分为___________、____________、_____________。
3.判别分析是判别样品_____________的⼀种⽅法,常⽤的判别⽅法有_____________、_____________、_____________、_____________。
4.Q 型聚类是指对_____________进⾏聚类,R 型聚类指对_____________进⾏聚类。
5.设样品12(,,,),(1,2,,)i i i ip X X X X i n '== ,总体(,)p X N µ∑ ,对样品进⾏分类常⽤的距离有____________________、____________________、____________________。
6.因⼦分析中因⼦载荷系数ij a 的统计意义是_________________________________。
7.主成分分析中的因⼦负荷ij a 的统计意义是________________________________。
8.对应分析是将__________________和__________________结合起来进⾏的统计分析⽅法。
9.典型相关分析是研究__________________________的⼀种多元统计分析⽅法。
⼆、计算题 1.设3(,)X N µ∑ ,其中410130002?? ?∑= ? ??,问1X 与2X 是否独⽴?12(,)X X '与3X 是否独⽴?为什么?2.设抽了5个样品,每个样品只测了⼀个指标,它们分别是1,2,4.5,6,8。
若样品间采⽤绝对值距离,试⽤最长距离法对其进⾏分类,要求给出聚类图。
多元统计学课程设计作业一、教学目标本课程旨在通过多元统计学的学习,让学生掌握多元统计分析的基本概念、原理和方法,培养学生运用多元统计学知识分析和解决实际问题的能力。
具体的教学目标如下:1.知识目标:使学生了解多元统计学的基本概念、原理和方法,包括因子分析、聚类分析、主成分分析等内容。
2.技能目标:培养学生运用多元统计学方法分析数据、解决实际问题的能力。
3.情感态度价值观目标:培养学生对多元统计学的兴趣,使其认识到多元统计学在科学研究和实际工作中的重要性。
二、教学内容本课程的教学内容主要包括以下几个部分:1.多元统计学基本概念:包括多元统计学的基本定义、特点和应用范围。
2.因子分析:介绍因子分析的基本原理、方法及其在实际应用中的例子。
3.聚类分析:讲解聚类分析的基本方法、步骤及其在实际应用中的案例。
4.主成分分析:阐述主成分分析的基本思想、算法及其在数据降维中的应用。
5.案例分析:通过具体案例,使学生掌握多元统计学方法在实际问题分析中的运用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体包括:1.讲授法:通过讲解多元统计学的基本概念、原理和方法,使学生掌握相关知识。
2.案例分析法:通过分析实际案例,让学生学会将多元统计学方法应用于解决实际问题。
3.讨论法:学生进行小组讨论,培养学生的合作意识和解决问题的能力。
4.实验法:安排实验课,让学生动手操作,巩固所学知识。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的多元统计学教材作为主要教学资料。
2.参考书:推荐学生阅读一些多元统计学的经典著作,以丰富其知识体系。
3.多媒体资料:制作多媒体课件,以便生动、直观地展示课程内容。
4.实验设备:为学生提供必要的实验设备,如计算机、统计软件等。
五、教学评估本课程的教学评估将采取多元化、全面评估的方式进行,主要包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解能力。
课程名称:多元统计回归分析
实验项目:边远及少数民族聚居区和会经济发展水平实验类型:验证性
学生学号:
学生姓名:
学生班级:
课程教师:
实验日期: 2016-03-28
)做出统计判断,最后对统计判断作出具体的解释
模块可以完成多元正态分布有关均值与方差的检验。
依次点选
、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲
,由此我们可以知道边远及少数民族聚居区社会经济发展水平与全国平均发展水平中的人均消费存在显著差别,即全国的平均人均消费大于边远及少数民族聚居区人均消费,相差值为
均大于显著性水平
发展水平与全国平均发展水平中的人均
盲半文盲等指标无明显差别。
注:验证性实验仅上交电子文档,设计性试验需要同时上交电子与纸质文档进行备份存档。
多远统计上机作业指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以各地区相应的人口数得到十项指标值见表1。
其中:X1:为每百万人口高等院校数;X2:为每十万人口高等院校毕业生数;X3:为每十万人口高等院校招生数;X4:为每十万人口高等院校在校生数;X5:为每十万人口高等院校教职工数;X6:为每十万人口高等院校专职教师数;X7:为高级职称占专职教师的比例; X8:为平均每所高等院校的在校生数;X9:为国家财政预算内普通高教经费占国内生产总值的比重;X10:为生均教育经费。
根据上面数据回答以下问题:(一) 计算10个变量的相关系数矩阵,并找出相关性最强的5组变量;1. 利用SPSS 软件,依次选中Analysis---correlate---bivariable ,得结果整理得⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡= 1.000.680.050.150.620.620.610.620.600.66 0.68 1.00 0.11 0.37 0.87 0.86 0.83 0.82 0.80 0.87 0.05 0.11 1.00 0.78 0.220.24 0.33 0.34 0.35 0.07 0.15 0.370.781.00 0.55 0.56 0.61 0.63 0.61 0.41 0.62 0.87 0.220.55 1.00 1.00 0.99 0.98 0.97 0.98 0.62 0.86 0.24 0.56 1.00 1.00 0.99 0.98 0.97 0.97 0.61 0.83 0.33 0.61 0.99 0.99 1.00 1.00 0.99 0.96 0.62 0.82 0.34 0.630.980.981.001.00 0.99 0.95 0.60 0.80 0.35 0.61 0.97 0.97 0.99 0.99 1.00 0.94 0.66 0.87 0.07 0.41 0.98 0.97 0.96 0.950.94 1.00xy r 2.其中:变量最强的5组变量:2X 和3X ,2X 和4X ,3X 和4X ,4X 和5X 及5X 和6X 。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。