❖ 强关联规则:同时满足用户定义的最小支持度阈值 (min_sup)和最小置信度阈值(min_conf)的规则 称为强规则。
9
8
2012-10-12
二、关联规则挖掘过程
两个步骤: ▪ 找出所有频繁项集。 ▪ 由频繁项集生成满足最小信任度阈值的规则。
挖掘模式:
Database
产生频繁项集
min_sup
3
2012-10-12
绪论
4
2012-10-12
一、基本概念
设 I={I1,I2,…,In} 是项的集合。
❖任务相关数据D:是事务(或元组)的集合。
❖事务T:是项的集合,且每个事务具有事务标识 符TID。
❖项集A:是T 的一个子集,加上TID 即事务。
❖项集(Items):项的集合,包含k个项的项集称为 k-项集,如二项集{I1,I2}。 ❖支持度计数(Support count):一个项集的出现次
Support(A B)=P ( A ∩ B )
= support _ count(A∩B)
count (T) ❖ 频繁项集:若一个项集的支持度大于等于某个阈值。
7
2012-10-12
一、基本概念
❖ 置信度c:是包含A的事务中同时又包含B的百分比, 即条件概率。[规则准确性衡量]
confidence ( A B ) = P ( B | A) = support _ count ( A U B ) support_count ( A)
啤酒=>尿布
职业 秘书 工程师
购买物品 月工资
尿布
3000
啤酒、尿布 5000
性别=“女”=>职业=“秘书”
20
2012-10-12