材料力学第7章-弯曲刚度
- 格式:ppt
- 大小:2.96 MB
- 文档页数:95
习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+-3-1=6EJ B ql θ 4-1=8EJB y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++ 边界条件:0x = 时 0y = ;'0y = 代入上面方程可求得:4024q l C l -= 50120q l D l =()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=-⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤ 43412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
材料力学弯曲知识点总结材料力学是研究物质力学性质和力学行为的一门学科,其中弯曲是一个重要的研究方向。
本文将对材料力学中的弯曲知识点进行总结,包括弯曲的定义、应力、应变和杨氏模量等内容。
1. 弯曲的定义弯曲是指在作用力或力矩的作用下,物体发生形状的变化,使其变曲或曲度改变的现象。
在材料力学中,弯曲是指材料在受到外力作用下,产生弯曲应变和弯曲应力的行为。
2. 弯曲应力弯曲应力是指在材料发生弯曲时,单位面积上的内力。
在弯曲过程中,材料上的各点受到不同程度的拉伸或压缩,产生弯曲应力。
弯曲应力与外力以及横截面形状和尺寸有关。
3. 弯曲应变弯曲应变是指材料在受到弯曲作用时,单位长度上的变形量。
弯曲应变正比于弯曲的曲率半径和材料的长度,与材料的刚度有关。
4. 应力和应变的关系根据胡克定律,应力和应变之间存在线性关系。
在弯曲过程中,弯曲应力和弯曲应变近似满足线性关系,可以用杨氏模量来表示。
杨氏模量是材料的一个重要力学参数,可以衡量材料的刚度。
5. 计算弯曲应力和应变的公式在弯曲现象中,可以通过一些公式来计算弯曲应力和应变。
其中,弯曲应力的计算公式为σ = (M*y) / I,弯曲应变的计算公式为ε = (M*y) / (E*I)。
其中,M为弯矩,y为离中性轴的距离,I为惯性矩,E为杨氏模量。
6. 中性轴和惯性矩在材料弯曲过程中,中性轴是指曲率最小的轴线,即弯曲位置上的轴线。
惯性矩则是材料承受弯矩时,各点离中性轴距离的平方乘以截面积后的积分,用来量化材料的抗弯刚度。
7. 材料弯曲的应用材料弯曲的特性使其具有广泛的应用,比如在工程结构中的材料选择和设计中,弯曲强度和刚度是重要的考虑因素之一。
此外,弯曲还可用于制造各种曲线形状的构件和装饰品。
综上所述,材料力学中的弯曲是一种重要的力学行为,涉及到弯曲应力、弯曲应变和杨氏模量等知识点。
弯曲应力和应变的计算可以通过公式来完成,中性轴和惯性矩是描述材料弯曲过程中位置和抗弯刚度的重要概念。
基础丨材料力学中的强度和刚度多人对力学中强度和刚度的概念总是混淆,今天就来谈一下自己的理解。
前言书中说为了保证机械系统或者整个结构的正常工作,其中每个零部件或者构件都必须能够正常的工作。
工程构件安全设计的任务就时保证构件具有足够的强度、刚度及稳定性。
稳定性很好理解,受力作用下保持或者恢复原来平衡形式的能力。
例如承压的细杆突然弯曲,薄壁构件承重发生褶皱或者建筑物的立柱失稳导致坍塌,很好理解。
今天主要来讲一下对于刚度和强度的理解。
一、强度定义:构件或者零部件在外力作用下,抵御破坏(断裂)或者显著变形的能力。
提取关键字,破坏断裂,显著变形。
比如说孙越把ipad当成了体重秤,站上去,ipad屏幕裂了,这就是强度不够。
比如武汉每年的夏天看海时许多大树枝被风吹断,这也是强度不够。
强度是反映材料发生断裂等破坏时的参数,强度一般有抗拉强度,抗压强度等,就是当应力达到多少时材料发生破坏的量,强度单位一般是兆帕。
破坏类型脆性断裂:在没有明显的塑形变形情况下发生的突然断裂。
如铸铁试件在拉伸时沿横截面的断裂和圆截面铸铁试件在扭转时沿斜截面的断裂。
塑形屈服:材料产生显著的塑形变形而使构件丧失工作能力,如低碳钢试样在拉伸或扭转时都会发生显著的塑形变形。
强度理论1. 最大拉应力理论:只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
所以按第一强度理论建立的强度条件为:σ1≤[σ] 。
2. 最大拉应变理论:只要最大拉应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
ε1=σu;由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E,所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3. 最大切应力理论:只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。