常用地震属性的意义
- 格式:doc
- 大小:563.50 KB
- 文档页数:20
地震属性及其提取方法地震属性及其提取方法1绪论1.1选题的必要性及重要性地震属性分析技术作为油气藏勘探的核心技术之一,其作用主要为:岩性及岩相、储层参数和油气的预测。
地震数据体中含有丰富的地下地质信息,不同的地震属性组合可能与某些地质参数具有很大的相关性,因此利用地震属性参数可以有效地进行储层预测。
常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
在层序界而内追踪闭合基础上,将地震属性分析技术、储集层反演技术、相干体切片技术等许多新技术综合应用于分析论证,可以预测有利的区带,进行油气藏勘探。
1.2重要研究内容地震属性包括剖面属性、层位属性及体属性,目前层属性最为常用和具有实际意义。
剖面属性提取就是在地震剖面沿目的层拾取各种地震信息,主要通过特殊处理来完成;层位属性就是沿目的层的层面并根据界面开一定长度的时窗提取各种地震信息。
提取的方式有:瞬时提取、单道时窗提取和多道时窗提;体属性提取方法与层位属性相同,只是用时间切片代替层位。
地震属性提取选择合理的时窗很重要,时窗过大,包含了不必要的信息;时窗过小, 会丢失有效成分。
时窗选取应该遵循以下原则:(1) 当目的层厚度较大时,准确追出顶底界面,并以顶底界面限定时窗,提取层间各种属性,也可以内插层位进行属性提取;(2) 当目的层为薄层时,应该以目的层顶界面为时窗上限,时窗长度尽可能的小,因为目的层各种地质信息基本集中反映在目的层顶界面的地震响应中。
1.3地震属性分析的难点问题(1)地震属性分析的间接性。
地震数据中所含的储层信息往往是十分间接的,至今无法建立明确的物理或数学模型,这种关系通常是定性的、模糊的、不唯一的,带有一定的经验性,因此我们无法用某种确定性的方法从地震数据中进行分析。
(2)地震属性相关性的错综复杂。
各种地震属性之间的相关性错综复杂,主次关系变1绪论化不定,数量关系难于提取,因此应用常规的分析方法做出定量的分析也比较困难。
地震属性含义及其应用一、瞬时属性19 假定复数道表示为:u(t) = x(t) • iy(t),则1. 瞬时实振幅IReAmp ( In sta nta neous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅IQuadAmp (I nst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO异常。
3. 瞬时相位IPhase ( Instantaneous Phase)(t)二Atan(y(t).x(t)),定义为正切,输出相位已转换为角度,数值范围是[-180o,180°]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦CIP ( Cos ine of In st. Phase )是瞬时相位导出的属性。
其计算式为Cos( (t))常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率IFreq (I nst. Freque ney)定义为瞬时相位对时间的函数 d (t) dt (以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。
高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。
地震属性(seismic attribute)指的是那些由叠前或叠后地震数据,经过数学变换而到处的有关地震波的几何学、运动学、动力学或统计学特征。
其中没有任何其他类型数据的介入。
到目前为止,还没有一个公认的地震属性分类。
Quincy Chen等以波的运动学和动力学特征将地震属性分为:振幅、频率、相位、能量、波形、衰减、相关和比率等八大类,每一大类包含几至二十几类不等。
从地震属性的基本定义看,它是表征地震波形态、运动学特征、动力学特征和统计特征的物理量,有这明确的物理意义。
常用地震属性得意义地震反射波来自地下地层,地下地层特征得横向变化,将导致地震反射波特征得横向变化,进而影响地震属性得变化,因此,地震属性中携带有地下地层信息,这就是利用地震属性预测油气储层参数得物理基础。
随着地震属性处理及提取技术得大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用得角度,总结各地震属性参数与储层特征参数间得内在联系,为进一步研究建立地震信息与储层参数之间得关系提供可靠得前提条件,做到信息提取有方向、有目标。
为了达到这一目得,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达得在地震波波形上得意义,从正向上分析地震属性变化与油气储层特征变化得关系,进而探讨总结了它得潜在地质应用。
1、属性体、属性剖面这类属性就是按剖面(或体)处理得,就是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t o、属性值),可以用于常规地震剖面得方式显示与使用,常用得属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到得瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性下表为常用属性体属性意义及潜在地质应用一览表。
层相似体计算相邻地震道 得相似系数同上不但可以对三维体数据作 不连续分析,还可以对基于 层位得二维数据作相似性 预测,以及倾角、方位角,边 界检测与图象增强。
还可以 沿层解释得层位作相似性 分析波阻抗它将地震资料、测 井数据、地质解释 相结合,利用测井 资料具有较高得 垂向分辨率与地 震剖面有较好得 横向连续性得特 点,将地震剖面 “转换成”波阻抗 剖面用于储集层得研究,识别砂体得分布特征 与范围将地震资料与测井资料连 接对比,能有效地对地层物 性参数得变化进行研究,对 储层特征进行描述道积分对地震道进行积 分识别砂体、岩性尖灭点等相对对数波阻抗倾角倾向数据体计算同相轴得倾 角识别尖灭点、不整合、 了解地层产状2、沿层地震属性这种属性就是用解释层位在地震数据体 (剖面)中提取出来得属性,它得数值对 应一个层位或一套地层,每个属性值对应一个x 、y 坐标。
地震属性地震属性是现代三维地震解释流程中不可缺少的组成部分。
地震属性与地震振幅、三维可视化联合使用对常规分析有促进作用,可以使一些容易被忽视的微小特征显现出来。
因为属性能够定量化频率、振幅、相位和地震反射层的形态,它们可以作为模式识别和聚类软件的输入去外推由二维切片生成的地震地层分析到三维。
再就是与测井、微地震和产量测量相关的属性能够提供没有井控地方的储层物性的估计。
属性可以对断层、褶皱等构造特征,河道、物质搬运混合物等地层学特征,岩溶等成岩作用特征进行成图。
属性可以对地质灾害和甜点进行成图来估计地质力学特征和刻画裂缝。
属性也可以用来评价不同的地震数据处理流程对地震资料解释的影响和定量化数据质量。
本专题涵盖四个部分:算法发展、多属性分析工具、作为处理工具的属性、解释流程中属性的融合。
四篇论文介绍了新的属性:Fomel 和van der Baan 建议使用局部偏斜度作为估算地震信号局部相位的健壮方法。
他们利用合成数据和实际数据的例子说明了局部偏斜度在检测和校正地震信号的时变局部观测相位。
Giroldi和Garossino 注意到长波长的体曲率属性已经变成解释流程中必不可少的一部分。
他们加入了分数阶积分来修改以前引入的分数阶导数曲率算法,并且展示了该方法能够快速生成千米级波长构造的特征的图像,这些特征通常需要花费大量的时间来解释难以拾取的层位。
al-Dossary等引入了一种新的“地震紊乱”属性来定量描述三维叠后地震数据中的随机程度。
不像相干和混沌属性,紊乱属性对断层、河道以及其他的地层边界不敏感,正因如此,它在圈定盐体和提供风险评估中的地震数据质量定量测量方面具有很大的潜力。
张等描述了一种骨架算法,该算法将倾角度量、相干、曲率等边缘敏感属性转化为称作断层面“目标”属性,该属性有望可以加快地震解释过程。
四篇论文描述了融合多种属性到一个图中的方法:McArdle等展示了颜色和调配的有效使用怎样提供多属性图,这些属性图不仅能用在盆地水平的快速勘察,也能用在储层和勘探层面。
常用地震属性得意义地震反射波来自地下地层,地下地层特征得横向变化,将导致地震反射波特征得横向变化,进而影响地震属性得变化,因此,地震属性中携带有地下地层信息,这就是利用地震属性预测油气储层参数得物理基础。
随着地震属性处理及提取技术得大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用得角度,总结各地震属性参数与储层特征参数间得内在联系,为进一步研究建立地震信息与储层参数之间得关系提供可靠得前提条件,做到信息提取有方向、有目标。
为了达到这一目得,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达得在地震波波形上得意义,从正向上分析地震属性变化与油气储层特征变化得关系,进而探讨总结了它得潜在地质应用。
1、属性体、属性剖面这类属性就是按剖面(或体)处理得,就是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面得方式显示与使用,常用得属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到得瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。
相似体计算相邻地震道得相似系数同上不但可以对三维体数据作不连续分析,还可以对基于层位得二维数据作相似性预测,以及倾角、方位角,边界检测与图象增强。
还可以沿层解释得层位作相似性分析波阻抗它将地震资料、测井数据、地质解释相结合,利用测井资料具有较高得垂向分辨率与地震剖面有较好得横向连续性得特点,将地震剖面“转换成”波阻抗剖面用于储集层得研究,识别砂体得分布特征与范围将地震资料与测井资料连接对比,能有效地对地层物性参数得变化进行研究,对储层特征进行描述道积分对地震道进行积分识别砂体、岩性尖灭点等相对对数波阻抗倾角倾向数据体计算同相轴得倾角识别尖灭点、不整合、了解地层产状2、沿层地震属性这种属性就是用解释层位在地震数据体(剖面)中提取出来得属性,它得数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。
常用地震属性的意义地震属性是描述和衡量地震的一些参数和特征,对于了解地震的性质和影响具有重要意义。
常用的地震属性有震级、震源深度、震源机制、震源距离和烈度等。
下面将逐一解释这些地震属性的意义。
首先是震级。
震级是衡量地震能量大小的指标,常用的有里氏震级和矩震级。
里氏震级是根据地震的震源破裂面积和破裂时释放的能量,反映地震破坏力的大小。
矩震级是通过测量地震波振幅的分布,计算地震矩并转换为震级,可以更准确地估算地震能量。
震级可以用来评估地震对人类和建筑物的破坏程度,以及确定地震预警和防护措施的需求。
其次是震源深度。
震源深度是指发生地震的地下位置,并可分为浅源地震、中源地震和深源地震。
不同震源深度的地震具有不同的地表震感和破坏范围。
浅源地震震源深度通常在0-70公里,地震波在传播过程中能量损失较小,对地表造成明显的破坏;中源地震震源深度通常在70-300公里,地震波经过一定的路径传播,能量损失较大,对地表影响较小;深源地震震源深度通常大于300公里,能量损失更大,对地表几乎没有明显影响。
因此,了解震源深度有助于评估地震可能带来的破坏程度。
接下来是震源机制。
震源机制是描述地震震源破裂过程和发生地震的力学特征,常用的有走滑断层、逆冲断层和正断层。
具体的震源机制参数包括断层面的走向、倾角和滑动方向等。
震源机制可以指示地震波扩散方向和强度,对于地震危害评估和断层活动研究具有重要意义。
对于不同类型的震源机制,地震破坏的方式和强度也有所不同。
然后是震源距离。
震源距离是指震源与观测点的水平距离,通常以赤道上其中一点为参照。
震源距离对地震波的传播和衰减有显著影响。
随着震源距离的增加,地震波能量逐渐减弱,对地表造成的破坏也会减轻。
了解震源距离可以用来估算地震对不同观测点的影响范围,指导地震灾害防护工作。
最后是烈度。
烈度是根据地震对地表造成的影响程度进行划分的评价指标,常用的有麦氏烈度和中国地震烈度。
麦氏烈度用地震引起的物理现象和人们感受到的震感,与地震波强度之间的关系进行刻画。
常用地震属性的意义地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。
随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。
为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。
1、属性体、属性剖面这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应、属性值),可以用于常规地震剖面的方式显示与使用,常空间位置,即(x、y、t用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。
2、沿层地震属性这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。
提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。
用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。
常用地震属性的计算方法总结如下:(1)、均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值开平方。
由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。
(2)、平均绝对值振幅(Average Absolute Amplitude)平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。
(3)、最大波峰振幅(Maximum Peak Amplitude)最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。
PAL画一个使这三个采样点适合曲线并且沿这一曲线确定出最大值。
Maximum Peak Amplitude = 125(4)、平均波峰振幅 (Average Peak Amplitude)平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。
(5)、最大波谷振幅 (Maximum Trough Amplitude)最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。
PAL 画一个适合这三个采样点的曲线并且沿着这一曲线确定出最大值。
Maximum Trough Amplitude = |-90| = 90(6)、平均波谷振幅(Average Trough Amplitude)平均波谷振幅是对每一道在分析时窗里的所有负振幅值相加,得到总数除以时窗里的负振幅值采样数得到的。
(7)、最大绝对值振幅 (Maximum Absolute Amplitude)计算每道的最大绝对值振幅的求取方法是,首先在分析时窗内计算出波峰和波谷的值,得出最大的波峰或波谷值,然后,PAL画一抛物线,恰好通过最大波峰或波谷振幅值和它两边的两个采样点,沿着这曲线内插可得到最大绝对值振幅值。
PAL 画一个适合这三个采样点的曲线并且沿着这一曲线确定出最大值。
Maximum Absolute Amplitude = 123.6(8)、总绝对值振幅 (Total Absolute Amplitude)总绝对值振幅是计算确定时窗内的所有道的绝对值振幅值。
Total Absolute Amplitude = sum of absolute values of amplitudes= 1045(9)、总振幅 (Total Amplitude)每一道的总振幅是,在层内对采样点求取总的振幅值。
Total Amplitude = sum of amplitudes = 559(10)、平均能量 (Average Energy)对于每一道的平均能量的求取方法是,对分析时窗内的振幅值平方相加,对总数除以时窗内的采样数求得。
(11)、总能量(Total Energy)对于每一道总能量的求取方法是,对分析时窗内的振幅值平方相加求和得到的。
Total Energy = sum of squared amplitudes = 83,945(12)、平均振幅 (Mean Amplitude)对于每一道的平均振幅的求取方法是,对分析时窗内的振幅值相加,总数除以非零采样点数得到的。
(13)、振幅的平方差 (Variance in Amplitude)对于每一道的振幅的平方差的求取方法是,对分析时窗内的每个振幅值减去平均值累加,总数除以非零采样点数得到的。
(14)、振幅的立方差 (Skew in Amplitude)对于每一道的振幅的立方差的求取方法是,对分析时窗内的所有采样点求取平均值,然后减去每道的平均值,计算差值的立方,求出这些值的总和,除以采样点数就可得到。
(15)、振幅的峰态 (Kurtosis in Amplitude)对于每一道的振幅的峰态的求取方法是,对分析时窗内的所有采样点求取平均值,然后减去每道的平均值,计算差值的四次方,求出这些值的总和,除以采样点数就可得到。
(16)、有效带宽(Effective Bandwidth)数据体时窗的有效带宽是由数据体的零延时的自相关除以采样周期与道两边所有自相关的总和之积而求得的。
r(t) = the two-sided auto-correlation of the data in the windowT = sample periodWindow length = M+1有效带宽被看作是定量化的相似数据体。
狭窄的带宽就是比较相似的数据体;而较宽的带宽是不太相似的数据体。
因此,宽的带宽表示不均质的反射特征,被认为是复杂的地层;窄的带宽表示的是较简单的或平滑的反射特征,认为是均质的地层模式。
带宽能帮助我们在数据体中识别噪声区,有噪声的数据体比没有噪声的纯数据体有很明显宽的带宽。
应用地震地层学的方法,可以从与其它属性相配合的有效带宽中推断出一系列地震反射所代表的沉积环境。
如一个狭窄的带宽区域,低振幅,高频,连续的平行反射代表了低能量沉积环境,认为是深海页岩。
(17)、弧长(Arc Length)围的比例测量。
假想,用道的波形样式绘制地震道曲线,然后想象一根绳子放在地震道上跟着每个波形波动。
地震道的弧长就是当绳子伸展开的总长度。
a(i)= amplitude at the i th sample T = sample periodN = number of samples in the window弧长是用于高振幅高频率和高振幅低频率之间与低振幅高频率和低振幅低频率之间的区别。
如因为页岩和砂岩的界面,一般有一些突变和高阻抗的反差,弧长就用于页岩层序和含砂量较高的层序之间的识别,带宽越小,弧长就越接近总绝对值振幅。
这一属性相似于反射的非均质性。
(18)、过零值平均频数(Average Zero Crossings Frequency)),和求过零值平均频率的计算方法是通过数据体时窗中的过零点的个数(Nzc出第一个通过零值的反射时间和最后一个通过零值的反射时间,根据下式计算出过)。
零点平均次数(fzct 1 = time of first zero crossing t 2 = time of last zero crossing对于过零值平均频数的用途相似于瞬时频率,由于它不会有尖脉冲,并且它的值不会为负值或无穷大,因此它是一个比较稳定的量。
当时窗比较小时,过零值平均频数对波形中较小的变化比平均瞬时频率敏感。
(19)、Dominant Frequency Series F1、F2、F3(主频系列F1、F2、F3)对于所确定时窗的每一个输入道的估算值是由能量谱中的三个最主要频率分量组成,如下图中的F1、F2、F3。
其中F1是低频段中的峰值,F2是中间频段中的峰值,F3是高频段中的峰值。
运行这些属性,PAL就会用最大熵方法,对每道进行谱分析,六次多项式是用于能量谱模式和识别它的三个峰值。
它应用的优点是能够输入有限的数据得到可靠的估算值。
对于一定的输出格式必须由40ms的数据,当分析时窗在40ms以下时, PAL将会输出无效值。
是在50ms的分析时窗中得到的。
最大熵方法是在有限的时间时窗内得到可靠的估算值,但这些是对三个主频的数学方法估算值,并且这些估算值可能不总是于与你在实际能谱上看到的峰值一样。
这三组属性帮助你在数据时窗内来确定主频特征,在任意或所有主频系列属性里的侧向变化可能有由油气饱和度或断裂导致的频率吸收效应的特征。
例如,油气饱和的砂体削弱了较高的频率,这样你就会看到较低的一个或所有的主频。
虽然同样的是计算峰值谱频率,因为它可以显示在振幅谱中的最重要的三个点,所以主频系列有更多的信息。
通过更多的振幅谱特征,主频系列可以揭示与地层或岩性有关的频率趋势。
(20)、峰值谱频率(Peak Spectral Frequency)对于所确定时窗内的每一输入道,峰值谱频率的估算值是由能量谱中单一的最主要的频率组分组成。
峰值谱频率相似于主频系列,主频系列估算值是由能量谱中的三个最主要的频率段组成。
大体上,峰值谱频率将描述的是主频系列(F1、F2、F3)中所给任意道的最主要的谱组分。
运行这些属性,PAL就会用最大熵方法,对每道进行谱分析,多系数多项式是用于能量谱模式和识别它的最重要的峰值谱频率。
它的应用的优点是能够输入有限的数据得到可靠的估算值。
对于一定的输出格式必须由40ms的数据,当分析时窗在40ms以下时, PAL将会输出无效值。
上图所绘的能量谱图是通过对所有道进行快速傅立叶变换得到的,主频估算值是在50ms的分析时窗中得到的。
最大熵方法是在有限的时间时窗内得到可靠的估算值,但这些是峰值谱频率数学方法估算值,并且这些估算值可能不总是于与你在实际能谱上看到的峰值一样。
峰值谱频率提供了一种追踪主频特征的方法,主频特征可能由油气饱和度、断裂、岩性、地层的变化有关现象导致的频率吸收效应所带来的的特征。
例如,油气饱和砂体吸收了较高的地震频率,这样你可能看到较低的峰值谱频率值。
任何大于门槛值的频率都将从峰值谱频率分析中被排除的。