第二章液压油与流体力学基础(4)
- 格式:ppt
- 大小:1.09 MB
- 文档页数:44
第二章液压油和液压流体力学基础一、填空1.油液在外力作用下,液层间作相对运动而产生内摩擦力的性质,叫做油液的,其大小用表示。
常用的粘度有三种:即、和。
2.液体的粘度具有随温度的升高而,随压力增大而的特性。
3.各种矿物油的牌号就是该种油液在40℃时的的平均值,4.当液压系统的工作压力高。
环境温度高或运动速度较慢时,为了减少泄漏。
宜选用粘度较的液压油;当工作压力低,环境温度低或运动速度较大时,为了减少功率损失,宜选用粘度较的液压油。
5.液压系统的工作压力取决于。
6.在研究流动液体时,将既又的假想液体称为理想液体。
7.当液压缸的有效面积一定时,活塞的运动速度由决定。
8.液体的流动状态用来判断,其大小与管内液体的、和管道的有关。
9.在液压元件中,为了减少流经间隙的泄漏,应将其配合件尽量处于状态。
二、判断1.液压传动中,作用在活塞上的推力越大,活塞运动的速度越快。
()2.油液在无分支管路中稳定流动时,管路截面积大的地方流量大,截面积小的地方流量小。
()3.习题图2-1所示的充满油液的固定密封装置中,甲、乙两个用大小相等的力分别从两端去推原来静止的光滑活塞,那么两活塞将向右运动。
()习题图2-14.液体在变径的管道中流动时,管道截面积小的地方,液体流速高,压力小。
( )5.流经环形缝隙的流量,在最大偏心时为其同心缝隙流量的2.5倍。
( )6.液压系统的工作压力一般是指绝对压力值。
( )7.液压油能随意混用。
( )8.在液压系统中,液体自重产生的压力一般可以忽略不计。
( )9.习题图2-2两系统油缸尺寸相同,活塞匀速运动,不计损失,试判断下列概念:(1)图b活塞上的推力是图a活塞上推力的两倍;()(2)图b活塞上的运动速度是图a活塞运动速度的两倍;()(3)图b缸输出的功率是图a缸输出功率的两倍;()(4)若考虑损失,图b缸压力油的泄漏量大于a缸压力油的泄漏量。
()(a)(b)习题图2-2三、单项选择1.液压系统的执行元件是。
第2章 液压流体力学基础液压传动以液体作为工作介质来传递能量和运动。
因此,了解液体的主要物理性质,掌握液体平衡和运动的规律等主要力学特性,对于正确理解液压传动原理、液压元件的工作原理,以及合理设计、调整、使用和维护液压系统都是十分重要的。
2.1液体的物理性质液体是液压传动的工作介质,同时它还起到润滑、冷却和防锈作用。
液压系统能否可靠、有效地进行工作,在很大程度上取决于系统中所用的液压油液的物理性质。
2.1.1液体的密度液体的密度定义为dV dm V m V =∆∆=→∆0limρ (2.1) 式中 ρ——液体的密度(kg/m 3);ΔV ——液体中所任取的微小体积(m 3);Δm ——体积ΔV 中的液体质量(kg );在数学上的ΔV 趋近于0的极限,在物理上是指趋近于空间中的一个点,应理解为体积为无穷小的液体质点,该点的体积同所研究的液体体积相比完全可以忽略不计,但它实际上包含足够多的液体分子。
因此,密度的物理含义是,质量在空间点上的密集程度。
对于均质液体,其密度是指其单位体积内所含的液体质量。
V m =ρ (2.2) 式中 m ——液体的质量(kg );V ——液体的体积(m 3)。
液压传动常用液压油的密度数值见表2.1。
表2.1 液压传动液压油液的密度变化忽略不计。
一般计算中,石油基液压油的密度可取为ρ=900kg/m 3。
2.1.2液体的可压缩性液体受压力作用时,其体积减小的性质称为液体的可压缩性。
液体可压缩性的大小可以用体积压缩系数k 来表示,其定义为:受压液体在发生单位压力变化时的体积相对变化量,即VV p k ∆∆-=1 (2.3) 式中 V ——压力变化前,液体的体积;Δp ——压力变化值;ΔV ——在Δp 作用下,液体体积的变化值。
由于压力增大时液体的体积减小,因此上式右边必须冠一负号,以使k 成为正值。
液体体积压缩系数的倒数,称为体积弹性模量K ,简称体积模量。
V K p V=-∆∆ (2.4) 体积弹性模量K 的物理意义是液体产生单位体积相对变化量所需要的压力。
第二章液压油与液压流体力学基础2.1重点、难点分析本章是液压与气压传动课程的理论基础。
其主要内容包括:一种介质、两项参数、三个方程、三种现象。
一种介质就是液压油的性质及其选用;两个参数就是压力和流量的相关概念;三个方程就是连续性方程、伯努利方程、动量方程;三种现象就是液体流态、液压冲击、空穴现象的形态及其判别。
在上述内容中重点内容为:液压油的粘性和粘度;液体压力的相关概念如压力的表达、压力的分布、压力的传递、压力的损失;流量的相关概念如:流量的计算、小孔流量、缝隙流量;三个方程的内涵与应用。
其中,液压油的粘度与粘性、压力相关概念、伯努利方程的含义与应用、小孔流量的分析是本章重点的重点也是本章的难点。
1.液压油的粘性是液体流动时由于内摩擦阻力而阻碍液层间相对运动的性质,粘度是粘性的度量。
液压油的粘度分为动力粘度、运动粘度和相对粘度。
动力粘度描述了牛顿液体的内摩擦应力与速度梯度间的关系,物理意义明确但是难以实际测量;运动粘度是动力粘度与密度的比值,国产油的标号就是用运动粘度的平均厘斯值的表达,实用性强,直接测量难;相对粘度就是实测粘度,其中恩氏粘度就是用恩氏粘度计测量油液与对比液体流经粘度计小孔时间参数的比值,直观性强,物理意义明确,操作简便。
在一般情况下,动力粘度用作粘度的定义,运动粘度用作油品的标号,相对粘度用作粘度的测量。
三者的换算关系可以用教材中所提供的公式解算,也可通过关手册所提供的线图查取。
影响粘度的因素主要有温度和压力,其中温度的影响较大。
在选用液压油时,除考虑环境因素和设备载荷性质外,主要分析元件的运动速度、精度以及温度变化等因素的影响。
2.液压系统中的压力就是物理学中的压强,压力分静止液体的压力和流动液体的压力两种;按参照基准不同,压力表达为绝对压力、表压力和真空度;在液压系统中,压力的大小取决于负载(广义负载);压力的传递遵循帕斯卡原理,对于静止液体压力的变化量等值传递,对于流动液体压力传递时要考虑到压力损失的因素;压力分布的规律就是伯努利方程在静止液体内的一种表述形式。