考研高数总复习Fourier积分讲解
- 格式:ppt
- 大小:656.00 KB
- 文档页数:40
2 Fourier 分析Fourier分析这门学科是数学分析中最古老的学科之一,它对数学家和工程师都是相当重要的。
从实用的观点来看,当人们考虑Fourier分析的时候,通常是指(积分)Fourier变换和Fourier级数。
Fourier变换是在实直线IR上定义的某个函数f的Fourier积分。
当f看作是一个模拟信号时,它的定义域IR就称为连续时域。
在此情况下,f的Fourier变换fˆ描述信号f的谱特性。
因为谱信息用频率给出,所以Fourier变换fˆ的定义域还是IR,它称为频域。
另一方面,一个Fourier级数是双无限序列到周期函数的一种变换。
因此,当一个双无限序列看作是一个数学信号时,它的定义域是整数集合ZZ,称为离散时域。
这时,它的Fourier级数再次描述数学信号的谱特性,一个Fourier级数的定义域还是实直线IR,它是频域。
然而,因为Fourier级数是π2周期的,在此情况下,频域IR常用单位圆等同。
对于一个数学家来说,这种表示是更令人满意的,因为ZZ的“对偶群”是“圆群”。
Fourier变换和Fourier级数的重要性不仅由于它们的物理解释的重要性。
如信号的时间—频率分析,而且还由于Fourier分析技术是极其有力的。
例如,在小波分析研究中,Poisson求和公式、级数与积分的Parseval恒等式、Gaussion 的Fourier变换、函数的卷积以及δ分布等等都是经常遇到的。
因为这本专著打算是自我包容的,本章讨论Fourier分析的基本知识方面的预备材料,如上述提及的内容。
2.1 Fourier 变换和Fourier 逆变换全书中,所有定义在实直线IR 上的函数假定是可测的。
对于不熟悉Lebesgue基本理论的读者,而乐意相信一些标准的定理,在假定f 是分段连续的情况下,损失是很小的。
所谓Lebesgue 基本理论是指,在IR 中存在非有限聚点{}j x ,使对于所有j 有1+<j j x x ,并且f 在每个开区间以及无界区间))min(,(j x -∞、)),(min(∞j x (如果)min(j x ,)max (j x 存在)是连续的。
fourier级数逐项积分
在数学中,傅里叶级数是一种将周期函数表示为无穷级数的方法。
逐项积分是逐个计算级数中每一项的积分值。
在处理傅里叶级数时,逐项积分是一种常见的技术,可以用于计算傅里叶级数的积分值。
具体来说,如果有一个周期函数f(x),我们可以将其表示为傅里叶级数:
f(x) = a0 + ∑[an * cos(nx) + bn * sin(nx)]
其中,an 和 bn 是傅里叶系数,可以通过将 f(x) 与cos(nx) 和 sin(nx) 分别做内积来计算。
如果我们想要计算 f(x) 在某个区间 [a, b] 上的积分,我们可以使用逐项积分的方法。
首先,我们将傅里叶级数展开:f(x) = Σ[an * cos(nx) + bn * sin(nx)]
然后,我们逐个计算每一项的积分:
∫[a, b] (an * cos(nx) + bn * sin(nx)) dx
最后,将所有项的积分值相加,得到 f(x) 在 [a, b] 上的积分值。
需要注意的是,逐项积分需要小心处理,因为级数中的每一项都是周期函数,它们的积分可能会很复杂。
此外,逐项积分也可能导致数值不稳定性,因此在实际应用中需要谨慎使用。
除了逐项积分,傅里叶级数还有其他的应用。
例如,在信号处理中,傅里叶级数可以用于将信号分解成不同的频率分量,从
而方便地分析和处理信号。
此外,傅里叶变换也是一种常见的工具,可以用于计算傅里叶级数的系数,从而将时域函数转换为频域函数,或者将频域函数转换为时域函数。
第十五章 Fourier 级数1 Fourier 级数上一章讨论的幂级数实质上是一种“解析”函数(即其存在任意阶导数), 这种函数类组成了一个无穷维线性空间, 21,,,n x x x ⋅⋅⋅⋅⋅⋅ 是它的一个线性无关的 无穷子集, 而幂级数就是这个集元素的线性组合, 但是这种函数太少(条件太强), 下面我们讨论的是种更广泛的函数项级数,它是由三角函数列所产生的三角级数.一、三角级数1、背景与三角级数形式在某些实验和应用中,常碰到一类周期运动,简谐振动,它可用正弦函数 sin()y A x ωϕ=+表示,A —振幅,ϕ—初相角,ω—角频率,周期T απω= 较复杂的周期运动则是由几个简谐振动叠加sin()k k k y A k x ωϕ=+ 1,2,k n =⋅⋅⋅11sin()n nk k k k k y y A k x ωϕ====+∑∑易见, k y 的周期为T k,1,2,k n =⋅⋅⋅,y 的周期仍为T , 对无穷多个简谐振动叠加就 可得到函数项级数01sin()n n n A A n x ωϕ∞=++∑ (1)若上述级数收敛, 则它所描述的运动是更一般的周期运动. 下面仅对1ω= 讨论, 由于sin()sin cos cos sin n n n nx nx nx ϕϕϕ+=+,01sin()n n n A A nx ϕ∞=++∑01(sin cos cos sin )n n n n n A A nx A nx ϕϕ∞==++∑ 记002a A = sin n n n A a ϕ= cos n n n Ab ϕ= 1,2,n =⋅⋅⋅ 故级数(1)可写成01(cos sin )2n n n a a nx b nx ∞=++∑ (2) 它是由三角函数列1,cos ,sin ,cos 2,sin 2,cos ,sin x x x x nx nx ⋅⋅⋅⋅⋅⋅所产生的一般形式的三角级数. 易见, 若级数(2)收敛, 则其和函数一定是以2π为周期的周期函数.我们下面主要讨论两个问题:1) 什么样的函数可用三角级数表示?2) 如果可表示, 系数0,,n n a a b 如何确定?2、 三角级数的收敛性定理1 若级数01||(||||)2n n n a a b ∞=++∑收敛,则级数(2)在整个R 上绝对且一致收敛.二、三角函数正交系统1、内积与正交如3R 中, 123(,,)x x x x =, 123(,,)y y y y =,112233,x y x y x y x y =++, ,0x y x y ⊥⇔=区间[,]a b 上所有Riemann 可积函数按通常的加法与数乘运算构成线性空间, 记作[,]R a b ,定义[,]R a b 中的内积为,()()ba f g f x g x dx 〈〉=⎰,,[,]f g R ab ∈ 若函数,f g 满足,0f g 〈〉=,则称,f g 在[,]a b 上正交, 简称f 与g 正交.2、正交函数系若函数列{}[,]n f R a b ⊂, 0, ,,,0, .i j i j f f i j ≠⎧〈〉=⎨≠=⎩ 则称{}n f 为[,]R a b 中的正交系. 进一步, 如果还有,1i i f f 〈〉=, 1,2i n =⋅⋅⋅⋅⋅⋅成立, 那么称{}n f 为[,]R a b 中的标准正交系.3、 三角函数正交系三角函数系{1,cos ,sin ,cos 2,sin 2}x x x x ⋅⋅⋅为区间[,]ππ-上的正交系, 事实上1,cos cos 0kx kxdx ππ-==⎰; 1,sin sin 0kx kxdx ππ-==⎰; sin ,cos sin cos 0kx hx kx hxdx ππ-==⎰ ,1,2k h =⋅⋅⋅对,1,2k h =⋅⋅⋅且k h ≠有sin ,sin sin sin 0kx hx kx hxdx ππ-==⎰ cos ,cos cos cos 0kx hx kx hxdx ππ-==⎰ 1([cos()cos()])2k h x k h x dx ππ-=++-⎰ 同时 1,12π=,22sin cos kxdx kxdx πππππ--==⎰⎰.但上述系统不是标准正交系, 而,,}x x nx nx ⋅⋅⋅ 为一标准正交系.三、以2π为周期的函数的Fourier 级数1、三角级数的系数与其和函数的关系定理 2 若在整个R 上, 01()(cos sin )2n n n a f x a nx b nx ∞==++∑,且等式右边级数 一致收敛,则有如下关系式成立:1()cos n a f x nxdx πππ-=⎰ 0,1,2n =⋅⋅⋅1()sin n b f x nxdx πππ-=⎰ 1,2n =⋅⋅⋅》2、 F ourier 系数与Fourier 级数设函数f 在[,]ππ-上可积且以2π为周期,称公式1()cos n a f x nxdx πππ-=⎰ 0,1,2n =⋅⋅⋅1()sin n b f x nxdx πππ-=⎰ 1,2n =⋅⋅⋅为Euler Fourier -公式,并称由此得到的,n n a b 为f 的Fourier 系数,同时称以Fourier 系数,n n a b 为系数的三角级数01cos sin 2n n n a a nx b nx ∞=++∑ 为函数f 的Fourier 级数,记为01()~cos sin 2n n n a f x a nx b nx ∞=++∑ 记号“~”表示上式右边是左边函数的Fourier 级数.由定理2知, 若右边三角级数在R 上一致收敛于和函数f , 则此三角级数就是f 的Fourier 级数,此时“~” 应该就是“=”,但从f 本身出发由Euler Fourier -公式得到f 的Fourier 系数及Fourier 级数是否就是f ?注 由积分值唯一,f 只能有一种形式的Fourier 级数,而同一Fourier 级数可以 表示不同的函数,也就是说g f ≠,但g 与f 可能有完全相同的Fourier 级数.下面我们需要讨论f 的Fourier 级数是否收敛? 若收敛, 又收敛于什么函数? 其与f 又有什么关系? 这就是收敛性问题.四、收敛定理1、按段光滑函数若f 的导函数f '在[,]a b 上连续,则称f 为[,]a b 上光滑函数; 若f 在[,]a b 上至多有有限个第一类间断点, 且f '在[,]a b 上仅有有限个点不连续且为第一类间断点, 则称f 在[,]a b 上按段光滑.若f 在[,]a b 上按段光滑, 则1) f 在[,]a b 上可积;2) [,]x a b ∀∈, (0)f x ±存在, 且0()(0)lim (0)t f x t f x f x t+→+-+'=+ 0()(0)lim (0)t f x t f x f x t -→+--'=- 3) f '在[,]a b 上可积.2、收敛定理定理 3 设函数f 是以2π为周期的周期函数, 且在[,]ππ-上按段光滑, 则 [,]x ππ∀∈-,f 的Fourier 级数01cos sin 2n n n a a nx b nx ∞=++∑ 收敛于f 在点x 处的左右极限的算术平均值,即(0)(0)2f x f x ++-=01cos sin 2n n n a a nx b nx ∞=++∑, 其中,n n a b 为函数f 的Fourier 系数.推论 若f 是以2π为周期的连续函数,且在[,]ππ-上按段光滑,则f 的Fourier 级数在R 上收敛于f .3、 函数的周期延拓在讨论函数的Fourier 展式时,常常只给出函数f 在(,]ππ-(或[,)ππ-)上的解析表达式,此时我们可以理解为它是定义在整个数轴上以2π为周期的函数,即在(,]ππ-以外的部分可按f 在(,]ππ-上的关系式作周期延拓,即作(), (,], ˆ()(2), ((21),(21)],f x x f x f x k x k k πππππ∈-⎧=⎨-∈-+⎩ 1,2,k =±±⋅⋅⋅.五、一些例子例 1 设, 0,()0,0,x xf xxππ≤≤⎧=⎨-<<⎩求f的Fourier展式.例 2 将函数()||f x x=,[,]xππ∈-展成Fourier级数.注设f是以2π为周期的可积函数.1) 若f为奇函数,则其Fourier级数中仅含正弦函数sin的项,而若f为偶函数,其Fourier级数仅含常数及余弦函数cos的项,2)1()cosna f x nxdxπππ-=⎰21()cosccf x nxdxππ+=⎰0,1,2n=⋅⋅⋅1()sinnb f x nxdxπππ-=⎰21()sinccf x nxdxππ+=⎰1,2n=⋅⋅⋅例 3 将函数22, 0,()0, ,, 2,x x f x x x x ππππ⎧<<⎪==⎨⎪-<≤⎩展成Fourier 级数.例 4 设函数f 满足:()()f x f x π+=-,问此函数在(,)ππ-内的Fourier 级数 具有什么性质.六、Fourier 级数的一致收敛性定理 4 设函数f 在[,]ππ-上连续,以2π为周期,且其导函数可积,则f 的Fourier 级数一致收敛于f .推论 若f 在[,]ππ-上可积,以2π为周期,则f 的Fourier 级数总可逐项积分,且所得到的级数一致收敛 (不论f 的Fourier 级数是否收敛). 例 5 将展开式11sin 2(1)n n nx x n∞+==-∑ ()x ππ-<<逐项积分.2 以2l 为周期的函数展开式一、以2l 为周期的函数的Fourier 级数上一节讨论的函数f 是以2π为周期的或者是定义在(,]ππ-上, 作以2π为周期的周期延拓函数, 本节主要讨论以2l 为周期的函数的Fourier 展式以及奇偶函数的Fourier 展开式.设函数()f x 以2l 为周期,在[,]l l -上可积,作代换l x t π=, 则函数()()lt F t f π=以2π为周期, 在[,]ππ-上可积(l x t π=为线性函数,可通过可积充要条件证明).函数()F t 的Fourier 系数为 1()cos n a F t ntdt πππ-=⎰ 0,1,2n =⋅⋅⋅ 1()sin n b F t ntdt πππ-=⎰ 1,2n =⋅⋅⋅ 01()~cos sin 2n n n a F t a nt b nt ∞=++∑ (还原成自变量x ) 注意到()()()l F t f t f x π==,t x lπ=, 则 01()()cos sin 2n n n a n n f x F t a x b x l l ππ∞==++∑ 其中 1()cos n a F t ntdt πππ-=⎰1()cos l l n f x xdx l lπ-=⎰, 0,1,2n =⋅⋅⋅ 1()sin n b F t ntdt πππ-=⎰1()sin l l n f x xdx l l π-=⎰, 1,2n =⋅⋅⋅ 若()f x 在[,]l l -上按段光滑,则f 可展成Fourier 级数, 且由收敛性定理知(0)(0)2f x f x ++-=01cos sin 2n n n a n n a x b x l l ππ∞=++∑ 注 可以验证三角函数系22{1,cos ,sin ,cos ,sin cos ,sin }n n x x x x x x l l l l l lππππππ⋅⋅⋅⋅⋅⋅ 是[,]l l -上的正交函数系.例 1 将函数0, 50, ()3, 05x f x x -<<⎧=⎨≤<⎩展成Fourier 级数.注2 我们可将任一有限区间上定义的按段光滑函数展成Fourier 级数 (可首先 进行周期延拓) 此条件比幂级数展开条件弱得多.二、正弦级数与余弦级数1、正弦级数与余弦级数设f 是以2l 为周期的偶函数或是定义在[,]l l -上的偶函数,则在[,]l l -上,()cos n f x x l π为偶函数,()sin n f x x lπ为奇函数,因而f 的Fourier 系数为 02()cos l n n a f x xdx l lπ=⎰ 0,1,2n =⋅⋅⋅ 0n b = 1,2n =⋅⋅⋅因而f 的Fourier 级数仅有余弦函数的项,即01()~cos 2n n a n f x a x lπ∞=+∑ 此级数称为余弦级数. 类似地, 若f 为[,]l l -上的奇函数(以2l 为周期), 则可得1()~sinn n n f x b x lπ∞=∑ 其中 02()sin l n n b f x xdx l lπ=⎰,1,2n =⋅⋅⋅ 称之为正弦级数.例 2 将()|sin |f x x =,x ππ-≤<, 展成余弦级数.2、奇展开与偶展开若f 仅在[0,]π([0,]l )上定义, 此时我们可将f 偶延拓(或奇延拓)到[,]ππ- (或[,]l l -)上,然后再根据前面的方法求其余(正)弦级数 例3 将()sin f x x =,[0,]x π∈分别展成正余弦级数. .例 4 将[0,]π上的函数 1 0 1() 20x h f x x h h x π<<⎧⎪⎪==⎨⎪<≤⎪⎩(0)h π<<展成正弦级数.例 5 将()f x x =在(0,2)内展成 1) 余弦级数; 2) 正弦级数; 3) 一般级数.注 同一函数在同一区间上可用正弦级数、余弦级数与一般级数分别表示.例 6 将2()f x x =(0)x π<<分别展成正弦和余弦级数.例 7 如何将定义在[0,]2π上的可积函数f 延拓到(,)ππ-上,使得其Fourier 级数剧院形式211cos(21)n n a n x ∞-=-∑小 结1、将[,]a b 上可积函数f 展为Fourier 级数最基本方法是 i) 按系数公式计算系数1()cos b n a n a f x xdx l l π=⎰ 0,1,2n =⋅⋅⋅1()sin b n a n b f x xdx l lπ=⎰ 1,2n =⋅⋅⋅ 其中2b al -=; ii) 将系数代入级数 01()~cossin 2n n n a n n f x a x b x l lππ∞=++∑; iii) 根据收敛性定理判定可改为等号的范围. 若f 在[,]a b 上分段光滑,则其Fourier 级数的和函数为() (,)(0)(0) (,) 2()(0)(0) 2f x f x a b f x f x x a b f S x f a f b x a b ∈⎧⎪++-⎪∈⎪=⎨++-⎪=⎪⎪⎩的连续点为的间断点或 呈周期状 其它 特别地,若f 为[,]l l -上的奇函数,则0n a =, 0,1,2n =⋅⋅⋅; 若f 为[,]l l -上的偶函数,则0n b =,1,2n =⋅⋅⋅; 若f 仅在[0,]l 上有定义, 则可将f 作奇偶延拓, 得到相应的正弦或余弦级数.注 可积函数在指定区间上的Fourier 展式是唯一的,而三角级数是无限多 (其系数不要求是此区间上的Fourier 系数).2、由Fourier 级数的定义和积分性质知Fourier 级数具有可加性.3、由Fourier 级数的定义及正余弦函数的正交性,三角多项式01cos sin 2nk k k a a kx b kx =++∑ 在[,]ππ-上的Fourier 级数就是其本身. 4、若f 在[,]ππ-上可积,则f 有Fourier 级数01()~cos sin 2n n n a f x a nx b nx ∞=++∑则不论此级数是否收敛(或收敛,也不论是否收敛于f ), 都可以逐项积分01()(cos sin )2xx n n n a f t dt a nt b nt dt ∞=-=+∑⎰⎰, [,]x ππ∈-.并且上式就是0()()2xa x f t dt ϕ=-⎰在[,]ππ-上的Fourier 展式. 5、若f 在[,]ππ-上连续, 按段光滑, ()()f f ππ=-,则01()(cos sin )2n n n a f x a nx b nx ∞==++∑. [,]x ππ∈-.而逐项求导之后,可得到f '的Fourier 级数()~(cos sin )n n n f x a nx b nx ∞=''+∑若f '仍分段光滑,则f '的Fourier 级数收敛于(0)(0)2f x f x ''++-,(,)x ππ∈-.若f '还是连续的,则1()(cos sin )n n n f x a nx b nx ∞=''=+∑ (,)x ππ∈-.3* 收敛定理的证明定理 (收敛定理) 设f 以2π为周期且在[,]ππ-上按段光滑,则在[,]x ππ∈-处,f 的Fourier 级数收敛于f 在点x 处的左右极限的平均值, 即(0)(0)2f x f x ++-01(cos sin )2n n n a a nx b nx ∞==++∑ 其中,n n a b 为f 的Fourier 系数.预备定理1 (Bessel 不等式) 若f 在[,]ππ-上可积,则2222011()2n n n a a b f x dx πππ∞-=++≤∑⎰.推论1 (Riemann Lebesgue -定理) 若f 为可积函数, 则lim ()cos 0nf x nxdx ππ-=⎰; lim ()sin 0nf x nxdx ππ-=⎰.注 由预备定理1 知220nn a b +→, 进而0,0n n a b →→. 推论2 若f 为可积函数, 则01lim ()sin()02n f x n xdx π+=⎰, 01lim ()sin()02n f x n xdx π-+=⎰.预备定理2 若f 是以2π为周期的函数, 在[,]ππ-上可积, 则其Fourier 级数的 部分和()n S x 写成1sin()12()()2sin2n n tS x f x t dt t πππ-+=+⎰当0t =时,被积函数中的不定式由极限01sin()12lim22sin2t n tn t →+=+确定.例 1 直接证明Riemann Lebesgue -定理. 若f 在[,]a b 上可积,则lim ()sin lim ()cos 0b baaf x xdx f x xdx λλλλ→∞→∞==⎰⎰.例2 证明:若,f g 在[,]ππ-上可积,且它们的Fourier 级数在[,]ππ-上分别 一致收敛于f 和g ,则0111()()2n n n n n a f x g x dx a b ππααβπ∞-==++∑⎰,其中,n n a b 为f 的Fourier 系数,,n n αβ为g 的Fourier 系数.注 若g f =, 则有若f 的Fourier 级数在[,]ππ-上一致收敛于f ,则Parseval 等式成立2222011()2n n n a f x dx a b πππ∞-==++∑⎰(Bessel 不等式中等号成立)例 3 证明:若三角级数01cos sin 2n n n a a nx b nx ∞=++∑中系数,n n a b 满足33sup{||,||}n n nn a n b M ≤,则上述三角级数收敛且其和函数具有连续导数.例 4 设周期为2π的可积函数(),()x x ϕψ满足()()x x ϕψ=-,则,ϕψ的Fourier 系数,,,n n n n a b αβ有何关系?例5 设()f x 是以2π为周期的可积函数,在[,]ππ-上的Fourier 级数为01()~(cos sin )2n n n a f x a nx b nx ∞=++∑证明:平移后的函数()f x h +的Fourier 级数为01()~cos sin 2n n n a f x h nx nx αβ∞=+++∑其中 cos sin n n n a nh b nh α=+,0,1,2n =⋅⋅⋅cos sin n n n b nh a nh β=-,1,2n =⋅⋅⋅例 6 将下列函数展为Fourier 级数. 1. ()x f x e = x ππ-≤<;2. 0() 0bx x f x ax x ππ-≤<⎧=⎨≤<⎩.例 7 将下列函数展为指定的Fourier 级数. 1) ()2xf x π-=,[0,]x π∈ 正弦级数;2) ()f x x =,0x l ≤≤ 别展为正弦余弦级数.例 8 证明:在[0,]π上, 2221cos 1(362)12n nx x x n ππ∞==-+∑.。
欧阳光中《数学分析》笔记和考研真题详解第15章Fourier级数15.1复习笔记一、Fourier级数1.相关概念(1)三角级数的定义形如一类的函数项级数,称为三角级数.(2)三角多项式上述三角级数前n项和称为(n次)三角多项式.(3)Fourier级数假定周期为2π的函数f(x)能展开成上一致收敛的三角级数:其中称系数由上式所确定的三角级数为f(x)的Fourier级数,系数称为f(x)的Fourier系数,并记2.正弦级数和余弦级数(1)设周期为2π的函数f(x)于上绝对可积,如果f(x)是奇函数,则从而这就是正弦级数.(2)当f(x)为偶函数时,必有,这时可得余弦级数3.一般周期函数的Fourier级数设f(x)是周期为T且在[0,T]上绝对可积的函数,f(x)在[0,T]上的Fourier级数:其中4.复数形式下的Fourier级数f(x)在复数形式下的Fourier级数复的Fourier系数二、Fourier级数的收敛性1.Riemann引理(1)Riemann引理设f(x)在(有界或无界)区间〈a,b〉上绝对可积,则(2)推论在[0,T]上绝对可积函数的Fourier系数2.Fourier级数收敛的充要条件(局部性定理)周期为2π的局部绝对可积函数f(x)的Fourier级数在点x的敛散情况及收敛时的极限值仅与f在该点任意指定小的邻域上的值有关,与此邻域外的值无关.3.Dini判别法(1)Dini判别法若于上绝对可积,则,即f的Fourier级数在点x收敛到S:(2)推论f是2π周期的局部绝对可积函数,若于x点存在左右极限f(x±)及所示的有限单侧导数,则Fourier级数于x点成立4.Jordan判别法设f在上单调(或有界变差),(1)若,则(2)若则三、Fourier级数的性质1.逐项积分定理设周期为2π的函数f(x)局部绝对可积且则收敛,且逐项积分公式成立:.2.Fourier级数逐项求导问题假定f(x)是周期为2π的连续可微函数,且的Fourier级数:其中表示的Fourier系数.由此可得故周期为2π的连续可微函数f的Fourier级数必可逐项求导,求导后得的Fourier级数.3.最佳平方逼近(1)定理设为f的Fourier系数,并设是f的Fourier级数前n项和,当且仅当时,平方误差最小,且最小值为(2)Besse1不等式(3)Parseva1等式四、用多项式逼近连续函数1.引理为2π周期、分段线性的连续函数,则的Fourier级数必一致收敛到2.Weierstrass定理(a,b有限)多项式p(x),使得15.2名校考研真题详解。