8 随钻测井 LWD
- 格式:pptx
- 大小:7.28 MB
- 文档页数:2
LWD随钻测井技术在水平井中的应用胜利石油管理局钻井工程技术公司前言随钻测井仪器早在上个世纪30年代就开始研究,通过不断的尽力和实践,到60年代初期,研制出了自然伽玛和电阻率随钻测井仪器,但由于工艺技术掉队,仅在有限的几口井中投入使用。
80年代,具有商业应用价值的随钻测井仪器和工具的出现,随钻测井技术开始大规模应用于生产。
各类功能全面、性能优良、能知足各类井眼尺寸随钻施工的新型地质导向仪器接踵出现。
目前,FEWD与国际上其他著名石油公司的地质导向仪器一路,已经普遍应用于石油勘探与开发领域。
自1999年胜利石油管理局钻井工程技术公司率先从美国哈里伯顿公司引进具有世界先进水平的LWD地质评价无线随钻测量仪以来,前后在胜利油田桩西、孤岛、东辛、河口、现河、草桥、临盘等采油厂投入利用,主要用于对采用常规钻井技术难以开发的薄层油藏、复杂断块油藏、存在边水/底水的薄层油藏、边远油藏、超稠/特稠油/低渗透剩余油藏等油藏的钻井开发任务,到目前为止累计完成了304口水平井的施工,其中哈里伯顿LWD完成274口井,吉尔林克LWD完成30口井。
在这些井的施工进程中,利用LWD对地层能够有效识别的优势,解决薄油层水平井的油层薄、中靶难和如何保证井眼轨迹在油层中的最佳位置穿行等难题,提高了水平段在油层的穿行率,取得了可观的经济效益。
第一章 LWD仪器简介胜利石油管理局钻井工程技术公司现配备有美国哈里伯顿公司生产的LWD系统和英国吉尔林克公司生产的LWD系统。
哈里伯顿公司的LWD系统测井参数包括自然伽玛(DGR)、电磁波电阻率(EWR-PHASE 4)、补偿中子孔隙度(CNP)和岩石密度(SLD)等4道测井参数。
吉尔林克公司LWD系统测井参数包括自然伽马、感应电阻率(TRIM )两道测量参数。
哈里伯顿公司随钻测井井下仪器简介1.1.1 自然伽玛传感器(DGR-Dual Gamma Ray)DGR传感器采用双向伽玛测量技术,即包括有两组伽玛射线探测器(盖革-米勒计数器)。
一、井下工具技术规范MWD类型350系统650系统1200系统悬挂短节外径4-3/4″6-1/2″8″9-1/2″121mm 165mm 203mm 241mm无磁钻铤内径(扶正器尺寸)2.815″ 2.815″3-1/4″3-1/4″71.44mm 71.44mm 82.55mm 82.55mm悬挂短节长度31ft 6ft 6ft 6ft9.449m 1.829m 1.829m 1.829m 悬挂短节扣型311×310 411×410 631×630 731×7303-1/2″4-1/2″6-5/8″7-5/8″上扣扭矩Ft.lb 9900 30000 47000 83000 N.m 13400 40700 63700 113500注意:以上扭矩允许有±10%的波动。
最大狗腿度滑动30°/30m21°/30m14°/30m14°/30m30°/100ft21°/100ft14°/100ft14°/100ft 滚动14°/30m10°/30m8°/30m8°/30m14°/100ft10°/100ft8°/100ft8°/100ft 二,井下仪器工作条件泥浆泵双缸或三缸空气包充气量推荐充气压力为立管压力的30~40%允许泥浆排量350系统9.50~22.1升/秒(150~350GPM)650系统14.2~41.0升/秒(225~650GPM)1200系统22.1~75.7升/秒(225~1500GPM)水基泥浆(清水或盐水)泥浆类型油基泥浆(原油或矿物油)泥浆密度小于2.170g/cm3(18PPG)含砂量小于1%(推荐小于0.5%)塑性粘度小于50cp可承受最大压力15000Psi(104MPa)最高工作温度125℃(302°F)堵漏材料不允许使用三、系统测量精度方位角±1.5°(Inc.>10°,Dip<70°)井斜角±0.2°磁性工具面±2.8°高边工具面±2.8°测量数据修正时间 3.5min/5.5min工具面修正时间14s/9s,传输频率0.5Hz/0.8Hz第2页共2页。
LWD随钻测量仪器现场使用问题及解决策略作者:杨英浩来源:《中国化工贸易·中旬刊》2018年第02期摘要:通过对LWD和EWR的介绍以及仪器工作原理的剖析,探讨在施工现场使用LWD无线随钻测量仪器使用时会出现的问题以及原因,提出相应处理方法,以尽快解决问题,减少测量数据的误差。
关键词:LWD;使用问题;思考1 LWD的定义LWD 意为随钻测井,其除了能够测量井眼轨迹参数外,还能测出地质参数、钻井工程参数。
其是在 MWD 基础上发展起来的,用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
它的应用大大方便了人们在地质工程中的工作步骤,提高了施工效率,缩短了探测周期。
2 仪器主损耗点及损耗原因2.1 设备运作主损耗点笔者已调查LWD设备引进至今大部分的施工资料,并将其归纳总结。
整体结构中消耗量最大的部件分别为:负责将各方压力值转化为电能信号的传感装置、可感应放射线交流的传感装置、管道连接固定装置以及管道固定装置的外部金属保护物等。
2.2 损坏的原因分析①钻井液性能不达标,无法适应仪器的需求。
钻井液就是为了LWD仪器的使用和运转所生产的“机油”。
钻井液是钻探过程中,孔内使用的循环冲洗介质。
因为井下的工作环境十分复杂,甚至容易出现卡钻事故,而钻井液的性能高低决定了仪器处理钻孔内介质的能力,也是有效避免仪器零部件受到砂砾等介质磨损的重要因素。
但是现场钻井液人员素质和能力参差不齐,导致施工過程中钻井液性能不稳定,不能满足施工过程中仪器的需求,因此易导致井下多次发生“事故”,增加仪器耗损和破坏的可能性。
②造斜率偏高。
设备虽然不断升级,但是使用途中依旧会发生不符合设备使用标定规格的现象。
现查明所用设备对开采现场有严格的造斜率角度值要求,但就观察设备损耗较多的现场记录发现,大部分情况下操作人员并未按照技术要求进行作业,从而导致设备在不规则状态下动工,仪器分节部位处于多余作业活动区,其外部护层长期被迫参与土层震动,造成过度损耗。
MWD和LWD的区别
2010-10-06 12:47
目前在水平井钻井中的主要技术是MWD(即随钻测斜),用于地层评价的称为LWD(随钻录井或FEMWD—地层评价随钻测量系统)。
随钻测量系统由井下传感器组件、数据传输或井下记录装置与地面检测处理设备组成。
所有随钻系统应用紧靠钻头上部的传感器来测量钻井参数与地层参数。
钻井期间测量的数据实时传输导地面。
MWD一般能测量井斜、方位及工具面方向。
LWD除上述外,还可以测量电阻率,自然咖玛,岩性密度、中子、声波等地层参数。
另外,还可用钻具振动分析技术来指导定向钻进。
水平井成功钻进的基础是LWD数据和MWD方向数据。
LWD工具提供能评价井眼所钻地层的信息。
这些数据决定如何改变井眼的方向使之达到所希望的目标。
这种方法就是所说的“地质导向”(geosteering)。
地质导向技术包括可靠的导向系统(MWD)、改进的新型地层物理测量、测井数据模型,近钻头传感器和测传马达,以及具有三维地震方法处理的详细的构造图。
以下是地质导向钻井中使用的典型的井底组合和钻柱组合:钻头 + 地质导向系统(测传马达,近钻头电阻率,咖玛和井斜,发射至接受端节)+ 地质导向工具接受端节(用于接受来自导向系统的数据,LWD测井质量,电阻率和咖玛数据)+ MWD测斜仪(测量的心脏,供电测斜和数据传输)+ 无磁钻铤(是为把MWD的方位误差减至最小或安装LWD的中子空隙度仪器)+ 钻杆。
GEOLINK LWD无线随钻使用要求一、对钻井液和净化设备的要求1.钻井液的含沙量必须小于0.5%。
2.若调整钻井液性能,应预先通知仪器工程师作好准备,因为调整钻井液性能,有可能造成井下仪器一段时间工作不正常。
3.禁止在钻井液中加堵漏剂和玻璃球等大颗粒物质,以免损坏井下仪器或造成井下仪器工作不正常(随钻堵漏剂除外)。
4.正常钻进时,必须保证两级(振动筛、除沙器)以上钻井液净化设备正常工作。
二、对钻井泵和循环系统的要求1.钻井泵的上水要好,泵的效率要求在95%以上。
2.钻井泵的空气包压力要稳定,按要求补充其压力为钻井泵正常工作时压力的1/3,若使用双泵,两台泵的空气包的压力应一致。
3.泵的阀体、阀座、凡尔、缸体、缸套、活塞和弹簧要完好,确保泵上水良好,如发现某一部分有不正常工作迹象,应及时检修泵,否则会影响LWD仪器正常工作。
4.整个循环系统所使用的滤网要干净,泵出口滤网在使用仪器前要进行清洗,确保钻井液通过自如。
5.需使用钻杆滤清器,以防大颗粒或其他物质卡住仪器,造成仪器不工作或坏。
三、对井队电源的要求1.必须提供连续稳定的220V,50~60Hz的交流电源,交流电源工频不稳可能造成LWD地面仪器不正常工作,若要停电或倒发电机,应预先通知仪器工程师。
2.根据仪器工程师的要求,将仪器房电源接到相应位置(尽可能配专线)。
四.钻进过程中仪器使用要求1.仪器入井前,需要在井口开泵测试仪器。
2.下钻速度要求平稳,严禁猛冲、猛撞。
3.起下钻过程如遇井下复杂情况,请立即联系仪器工程师,由仪器工程师配合井队选择较安全措施处理井下复杂情况,防止损坏仪器造成更大损失。
4.定向钻进时应均匀送钻、平稳加压,如果遇到较快钻时应控时钻进保证地质数据的测量。
一般控制钻进速度不超过1米/分钟。
5.钻进时,应将钻杆滤清器放入方钻杆下方的第一根钻杆内,要求每接一次单根,取出清理一次,并重新放在方钻杆和最上面一根钻杆之间。
注意,切勿将钻杆滤清器随钻柱一起下井。
2.2 LWD技术简介随钻测井(LWD——Logging While Drilling)是在随钻测量(MWD——Measurement While Drilling)基础上发展起来的、用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
随钻测井和随钻测量都是在钻井过程中同步进行的测量活动,实施随钻测井和随钻测量时都必须将测量工具装在接近钻柱底部的钻铤内,。
不同的是随钻测量主要测量井斜、井斜方位、井下扭矩、钻头承重等钻井工程参数,辅以测量自然伽马、电阻率等地球物理信息,用以导向钻井;而随钻测井则以测量钻过地层的地球物理信息为主,可以在钻井的同时获得电阻率、密度、中子、声波时差、井径、自然伽马等电缆测井所能提供的测井资料。
与MWD相比,LWD能提供更多、更丰富的地层信息。
2.2.1 L WD系统组成及工作方式随钻测井系统一般由井下仪器和井场信息处理系统两大部分组成。
前导模拟软件是井场信息处理系统的核心;井下仪器提供实时测量数据。
前导模拟软件完成大斜度井和水平井钻井设计、实时解释和现场决策,指导钻井施工。
随钻测井系统有实时数据传输方式和井下数据存储方式两种工作方式。
1)实时数据传输方式:将随钻测井仪在钻进时测量得到的信息实时传至驱动器,驱动器驱动脉冲发生器将这些信息采用特定的方式编码后传至地表压力传感器,地面信息处理与解码系统再将其转化为软件界面上可供显示或打印的数字化、图形化格式,为客户提供最终产品。
2)井下数据存储方式:将随钻测井仪器起下钻或钻进时采集到的信息存储于仪器的存储器内,待仪器的数据下载接口起至转盘面上约1.5米处,通过数据下载线将其传输到地表计算机内供处理、显示,一般可以在30min内提交处理好的数据磁盘并打印成图。
2.2.2 L WD主要功能及优点主要功能:测量井斜、方位、工具面等井眼几何参数。
随钻地质测井:采用实时和记忆方式同时进行地层参数的测量-- 电阻率、伽马、岩石密度、中子孔隙度。
60LWD随钻测井就是在钻进过程中,实时测量所钻地层的评价参数。
由于其具有地层裸露时间短,钻井液侵入地层时间短,测量的信息更接近原始地层等优势,所以在油气层评价中具有独特的重要地位。
同时,LWD能够在实时测量地层参数后,将所测数据实时传输到地面,给地质导向工程师提供最新的地层信息,为现场决策提供技术支持完成地质导向钻井作业。
但是在随钻测井时会受到井眼环境、地层参数、测量仪器等因素的影响导致所测数据不准确,所以需要对其进行校正,使其得到的数据更接近真实值。
一、随钻电阻率测井影响因素分析1.井眼、泥浆的影响。
井眼的缩径与扩径都会对电阻率测井产生一定的影响,井径的大小反映了随钻测井仪器周围钻井液的厚度变化,所以井径变化的影响也就是钻井液电阻率的影响,因此两者放在一起讨论。
井眼不规则会引起测井曲线的突变现象,而钻井液电阻率变化产生的影响较大。
但是,电阻率测量原理的不同,会导致井径变化对其产生不同的影响。
相位差电阻率在井眼尺寸影响下会增大,而衰减电阻率在井眼尺寸影响下会减小。
同时,井眼尺寸对不同的探测范围的电阻率的影响也不相同,对于探测范围小的电阻率受井眼尺寸的影响大,而探测范围大的电阻率受井眼尺寸影响小。
2.井眼围岩厚度的影响。
随钻电阻率测井的探测范围较广,有的仪器可以探测1米,有的仪器可以探测更大。
如果所需目的层的厚度较薄时,所测得的电阻率会受到目的层上下地层的影响,使其测量值明显降低,特别是对比探测范围广的电阻率受此影响更大。
所以,对于同一地层的同一深度,随着目的层的厚度增加,围岩对其的影响减小,当目的层厚度达到一定值时,围岩对其的影响可以不计;反而随着目的层厚度的变薄,围岩厚度对其的影响增大。
如果目的层厚度较小,受到上下低阻围岩的影响,使仪器测得的电阻率偏低,特别是深探测范围的电阻率影响更大。
在相同条件下,衰减电阻率受围岩的影响较大,而相位差电阻率受围岩的影响较小。
3.相对夹角和地层各向异性的影响。
LWD 无线随钻测量系统及现场应用一、概述LWD是九十年代以来,在钻井专业方面发展起来的一种代表钻井新技术的新型测量、测井仪器。
该仪器的主要特点是,在钻进的同时,能够及时获得有关井眼轨迹的参数和地层的特性,因而具有常规MWD和有线测井仪器难以具备的优点。
设计多上采用模块化的设计原理,允许将各个传感器的位置,按照作业需要或用户的要求进行改变。
信号传输系统主要由正脉冲或负脉冲脉冲信号发生器组成,在钻井作业的同时,井下传感器测得的地质参数数据,由脉冲发生器以正脉冲或负脉冲信号的形式通过泥浆介质,实时的传递至地面计算机处理系统。
地面计算机处理系统主要包括脉冲信号接受器和计算机处理系统,传输至地面的脉冲信号,由该系统接受并处理成数字信号,现场人员可根据需要和用户要求,绘制出各种类型的测井曲线,对地质参数的变化情况进行随时的监控,并作出相应的判断。
同时,井下记录模块,也将这些地质参数储存下来,供仪器起出地面后进行调用。
目前,LWD仪器和测量技术正广泛的应用于定向探井、水平井和大位移定向井的钻井施工过程中,为现场施工提供诸如随钻地质测井、地质导向、风险回避、提高钻井效率等多方面的应用。
随钻地质测井LWD可以在钻进作业进行的同时,实时的测取地质参数,并按照用户的需要,绘制出各种类型的测井曲线,提供给地质人员作为进行地质分析的依据。
由于是实时测量,地层暴露时间短,在钻时较快的情况下,暴露时间可以忽略不计。
因此,测井曲线是在地层液体有轻微入侵甚至没有入侵的环境下获得的,与电缆测井相比,更接近地层的真实情况。
可以使我们获得刚刚打开储层的油藏物性的最早期资料。
同时,由于是在钻进速度下进行测量,因而与电缆测井相比,具有更高的精度。
在必要的情况下,还可以将LWD测井曲线与电缆测井曲线进行对比,获得地层被流体侵入的实际资料,为进行地层液体的特性分析提供帮助。
(见图-1)地质导向LWD提供的实时地质参数数据,可以帮助现场人员随时监控地质参数的变化情况,对将要出现的地层变化作出准确的判断。
lwd随钻测井的工作原理
LWD(Logging While Drilling)随钻测井是一种在钻井过程中
进行地层测井的方法。
其工作原理包括以下几个步骤:
1. LWD传感器安装在钻头或钻杆上,随着钻井进程下入井内。
2. 当钻头或钻杆传感器接触到地层时,LWD系统开始测量地
层的物理参数。
3. 传感器通常包括测量电阻率、自然伽马射线、声波速度等参数的装置。
4. 传感器采集到的数据通过电缆传输到地面设备进行处理和分析。
数据可以通过实时传输技术实时显示在钻井现场工作站上。
5. 地面设备使用各种算法和方法对数据进行处理和解释,以获取有关地层的信息,例如地层的类型、含油、含气、水层等等。
6. 通过分析和解释得到的数据,钻井操作者可以及时调整钻井工艺,优化钻井方案,提高钻井效率和成功率。
总的来说,LWD随钻测井利用在钻井过程中安装的传感器获
取地层信息,并将数据实时传输至地面进行处理和解释,以指导钻井作业。
这种测井方法可以节省时间和成本,并提供实时的地层信息,提高钻井效率和成功率。
随钻测量(MWD):英文“ Measurement While Drilling的缩写。
无线随钻测量仪器可在钻井过程中及时进行测量,即在不停钻情况下,泥浆脉冲发生器将井下探头测得的数据发送到地面,经计算机系统采集处理后,得到实时的井身参数及地层参数。
随钻测量仪可在钻井过程中测量井身的倾角、方位角、工具面角和地层自然伽玛强度,为大斜度井及水平井的钻井及时提供井身参数和地层评价资料。
该仪器是在定向井及水平井钻井作业中,为提高钻井速度和保证钻井质量必不可少的技术装备。
随钻测井(LWD):英文“Log While Drilling的缩写/。
首先是进行电阻率测量,而后是中子、密度等。
区别在与求取的参数不同。
MWD 主要是随钻测量。
测量井的方位、井斜、工具面(磁力、重力)、指导打钻。
LWD在测量井的方位、井斜、工具面之上还有测量电阻率,自然伽马、井压、孔隙度、密度等,它能够代替现在的电缆测井。
井下信号传送装置的参数变为脉冲或压力波通过钻杆内钻井液为导体传至地面,进入系统的地面部分。
地面部分由一般装在立管上的信号接收器将参数变为电讯号通过电缆传至计算机,进行滤波、解码、显示和记录。
目前通用两种信号传送系统,一种是脉冲型,另一种是连续波型。
脉冲型又分正压、负压脉冲两种。
正压脉冲系统是利用柱塞瞬时地堵塞钻井液通道,造成立管压力突然上升出现一个峰值;负压脉冲系统是利用一泄流阀瞬时打开使钻井液泄流至环形空间,造成立管压力突然下降出现负峰值。
连续波系统是利用一组带槽的定子、转子、钻井液通过时产生一定频率的低频波,信号以此波为载波传至地面。
使用脉冲型的MWD 工具测量时,一般要停泵、停转盘。
使用连续波型的MWD 工具测量时可随钻进作业连续进行,不需停止钻进作业。
连续波的频率一般比正脉冲和负脉冲高普通的讲两者的区别就是LWD比MWD更全面。
一般的使用MWD就是探管+电池+脉冲+电池+伽马,一般的LWD就是探管+电池+脉冲+电池++伽马+电阻率。
一、井下工具技术规范MWD类型350系统650系统1200系统悬挂短节外径4-3/4″6-1/2″8″9-1/2″121mm 165mm 203mm 241mm无磁钻铤内径(扶正器尺寸)2.815″ 2.815″3-1/4″3-1/4″71.44mm 71.44mm 82.55mm 82.55mm悬挂短节长度31ft 6ft 6ft 6ft9.449m 1.829m 1.829m 1.829m 悬挂短节扣型311×310 411×410 631×630 731×7303-1/2″4-1/2″6-5/8″7-5/8″上扣扭矩Ft.lb 9900 30000 47000 83000 N.m 13400 40700 63700 113500注意:以上扭矩允许有±10%的波动。
最大狗腿度滑动30°/30m21°/30m14°/30m14°/30m30°/100ft21°/100ft14°/100ft14°/100ft 滚动14°/30m10°/30m8°/30m8°/30m14°/100ft10°/100ft8°/100ft8°/100ft 二,井下仪器工作条件泥浆泵双缸或三缸空气包充气量推荐充气压力为立管压力的30~40%允许泥浆排量350系统9.50~22.1升/秒(150~350GPM)650系统14.2~41.0升/秒(225~650GPM)1200系统22.1~75.7升/秒(225~1500GPM)水基泥浆(清水或盐水)泥浆类型油基泥浆(原油或矿物油)泥浆密度小于2.170g/cm3(18PPG)含砂量小于1%(推荐小于0.5%)塑性粘度小于50cp可承受最大压力15000Psi(104MPa)最高工作温度125℃(302°F)堵漏材料不允许使用三、系统测量精度方位角±1.5°(Inc.>10°,Dip<70°)井斜角±0.2°磁性工具面±2.8°高边工具面±2.8°测量数据修正时间 3.5min/5.5min工具面修正时间14s/9s,传输频率0.5Hz/0.8Hz第2页共2页。